
24

УДК 519.613:681.326

TAMER BANI AMER, И.В. ХАХАНОВ, Е.И. ЛИТВИНОВА, И.В. ЕМЕЛЬЯНОВ

КУБИТНЫЕ МОДЕЛИ ОПИСАНИЯ ЦИФРОВЫХ УСТРОЙСТВ

Предлагается облачный сервис QuaSim для моделирования и верификации цифровых
систем, основанный на транзакциях между адресуемыми компонентами памяти для реали-
зации любой функциональности. Описывается новый подход к синтезу и анализу цифро-
вых систем, использующий векторную форму (квант) задания комбинационных и последо-
вательностных структур для их имплементации в элементы памяти, что существенно отли-
чается от общепринятой теории проектирования дискретных устройств на основе таблиц
истинности компонентов. Используются квантовые или кубитные структуры данных [1-5]
для реализации вычислительных процессов в целях повышения быстродействия анализа
цифровых систем и уменьшения объемов памяти на основе унарного кодирования состо-
яний входных, внутренних и выходных переменных и имплементации кубитных векторов в
элементы памяти FPGA, реализующих комбинационные и последовательностные прими-
тивы.

1. Общая характеристика исследования
Цель – повышение надежности вычислительных устройств за счет адресуемости схем-

ных элементов, что позволяет выполнять online ремонт, а также повышает быстродей-
ствия методов моделирования, тестирования и верификации сложных цифровых систем,
благодаря уменьшению размерности моделей функциональных примитивов и адресной
реализации всех компонентов структур данных.

Задачи: 1) Создание автоматной модели кубитного процессора. 2) Синтез кубитных
моделей цифровых примитивов. 3) Синтез и анализ кубитных моделей цифровых схем. 4)
Анализ цифровых систем на основе использования квантовых векторов описания примити-
вов.

Актуальность исследования: 1) Современная система на кристалле содержит 94%
памяти и лишь 6% логики, которая доставляет более 90% проблем, связанных с верифика-
цией, тестированием, диагностированием и восстановлением работоспособности [6-7].
Конечно, быстродействие логических схем на порядок выше, чем у памяти, однако боль-
шая доля вычислительных процессов приходится на обмен информацией в структурах
памяти. Поэтому преимущества комбинационной логики в реальных вычислительных сис-
темах обработки больших данных компенсируются большими временными затратами
(порядка 90%), связанными с транзакциями в памяти. 2) Реализация процессора только на
основе использования элементов памяти делает его однородным по структуре и типам
функциональных примитивов, что доставляет очевидные технологические удобства про-
цессам проектирования, производства и эксплуатации, включая верификацию, встроенные
тестирование и диагностирование, а главное – ремонт в режиме online с помощью использо-
вания на кристалле универсальных адресуемых spare-компонентов памяти. 3) Моделиро-
вание в процессе верификации проектируемых вычислителей на основе адресных моделей
компонентов делает данную процедуру технологически простой из-за регулярных структур
данных и применения единственной операции транзакции на элементах памяти, а также
более быстродействующей, благодаря параллельной квантоподобной обработке больших
массивов однотипной памяти [3-5, 8, 11, 12]. 4) Энергопотребление при замене логики на
элементы памяти возрастает на несколько процентов, что на самом деле будет платой за
перечисленные выше существенные преимущества, связанные с увеличением выхода
годной продукции, повышением надежности вычислительных изделий, снижением стоимо-
сти проектирования и изготовления, а также автономным восстановлением работоспособ-
ности в режиме remote & online без участия человека. Однако энергосберегающие реше-
ния по вычислительным процессам на памяти дают основания полагать, что такого проиг-
рыша вообще не будет [9-10, 13-14].

25

2. Кубитные структуры данных
На мировом рынке электронных технологий наблюдается конкуренция между базами

имплементации идеи [1-4,12]: 1) Гибкая (мягкая) реализация проекта связана с синтезом
интерпретативной модели программной формы функциональности или в аппаратном испол-
нении программируемых логических устройств на основе FPGA, CPLD; преимущества – в
технологичности модификации проекта, недостатки – в невысоком быстродействии функ-
ционирования цифровой системы. 2) Жесткая реализация ориентирована на использование
компилятивных моделей при разработке программных приложений или на имплементацию
проекта в кристаллы VLSI [6-7,13-14]. Преимущества и недостатки жесткой реализации
инверсны по отношению к мягкому исполнению проектов: высокое быстродействие и
невозможность модификации. С учетом изложенных базовых вариантов реализации идеи
предлагаются квантовые структуры данных, ориентированные на повышение быстродей-
ствия гибких моделей программного или аппаратного исполнения проекта, а также на
возможность online ремонта в процессе эксплуатации.

Кубитные структуры описания цифровых систем. Кубит (n-кубит) есть векторная фор-
ма унитарного (унарного) кодирования универсума из n примитивов для задания булеана
состояний

n22 с помощью n2 двоичных переменных.
Например, если n=2, то 2-кубит задает 16 состояний с помощью четырех переменных.

Если n=1, то кубит задает четыре состояния на универсуме из двух примитивов (10) и (01)
с помощью двух двоичных переменных (00,01,10,11) [3,12]. При этом допускается суперпо-
зиция (одновременное существование) в векторе n2 состояний, обозначенных примитива-
ми. Кубит (n-кубит) дает возможность использовать параллельные логические операции
вместо поэлементных теоретико-множественных для существенного ускорения процессов
анализа дискретных систем.

Кубит отождествляется с n-кубитом или двоичным вектором, если это не мешает
пониманию излагаемого материала. Поскольку квантовые вычисления связаны с анализом
кубитных структур данных, то далее будем применять определение «квантовый» для
идентификации технологий, использующих три свойства квантовой механики: параллелизм
обработки (двоичных векторов), суперпозицию состояний и их перепутывание. Синонима-
ми кубита при задании двоичного вектора описания логической функции являются: Q-
покрытие, Q-вектор, квантовый вектор [3-4,12,15] как унифицированная векторная форма
суперпозиционного задания выходных состояний, соответствующих адресным кодам вход-
ных переменных логического элемента.

Кубит в цифровой системе используется в качестве формы задания структурного
примитива, инвариантной к технологиям реализации функциональности (hardware, software).
Более того, синтез цифровых систем на основе кубитных структур не привязан жестко к
теореме Поста, определяющей пять условий (классов) существования функционально
полного базиса. На предлагаемом уровне абстракции n-кубит дает более широкие возмож-
ности для векторного задания любой n-входовой функции из булеана мощностью

n22)A(B = ,
которое непременно содержит все функциональности, удовлетворяющие пяти классам
теоремы Поста. Формат структурного кубитного компонента цифровой схемы)Y,Q,X(Q* =
включает интерфейс (входные и выходную переменные), а также кубит-вектор Q, задаю-
щий функцию)X(QY = , размерность которого определяется степенной функцией от числа
входных линий n2k = .

26

3. Синтез кубитного покрытия комбинационной схемы
Кубит комбинационной схемы представляет собой вектор состояний выхода на упоря-

доченном множестве всех входных слов, который отождествляется с адресами ячеек
памяти вектора. Синтез Q-покрытия схемной структуры (без таблиц истинности логичес-
ких элементов) на основе примитивов, заданных Q-векторами, сводится к получению
обобщенного кубит-вектора путем выполнения логической операции над разрядами кубит-
ных векторов с помощью декартовой процедуры – для двух 4-разрядных кубитов по
суперпозиции логической операцией or (and, xor):

, , b(0) b(1) b(2) b(3)
a (0) c(0) a (0) b(0) c(1) a (0) b(1) c(2) a (0) b(2) c(3) a (0) b(3)
a (1) c(4) a (1) b(0) c(5) a (1) b(1) c(6) a (1) b(2) c(7) a (1) b(3)
a (2) c(8) a (2) b(0) c(9) a (2) b(1) c(10) a (2) b(2) c(11) a (2) b

∨ ∧ ⊕
= ∨ = ∨ = ∨ = ∨
= ∨ = ∨ = ∨ = ∨
= ∨ = ∨ = ∨ = ∨ (3)

a (3) c(12) a (3) b(0) c(13) a (3) b(1) c(14) a (3) b(2) c(15) a (3) b(3)= ∨ = ∨ = ∨ = ∨

Например, для логических суперпозиций двух кубитов при получении Q-векторов схем-
ных структур 1 1 2 1 2 2 1 2 1 2 3 1 2 1 2c (a a) (b b), c (a a) (b b), c (a a) (b b)= ∧ ∨ ∧ = ∧ ∧ ∨ = ∧ ⊕ ∨ , имеет
место таблица:

1

2

3

a(and) 0001
b(or) 0111

c a(and) b(or) 0111 0111 01111111
c a(and) b(or) 0000 0000 0000 0111
c a(and) b(or) 0111 0111 01111000

=
=

= ∨
= ∧
= ⊕

При построении Q-покрытия трех схем из трех элементов каждая используется суперпо-
зиция двух логических примитивов с третьим элементом (or, and, xor), вследсвтие чего
получаются три вектора размерности 16 бит каждый. Вычислительная сложность процеду-
ры синтеза Q-покрытия комбинационной схемы определяется произведением длин Q-

векторов p примитивов, входящих в нее:
p

i
i 1

card(Q)
=

η =∏ .
Проблема синтеза Q-покрытия схемы, входные линии/сходящиеся разветвления кото-

рой имеют гальванические/проводные соединения (здесь по переменной a2):
1 2 2 3c (a a) (a a)= ∧ ∨ ∨ , является более сложной задачей. В данном случае после синтеза

Q-покрытия схемы следует выполнить его верификацию относительно существования
противоречивых адресов на переменных a2 в целях минимизации Q-вектора путем после-
дующего исключения упомянутых адресов из рассмотрения. При этом размерность Q-
покрытия уменьшается до координат, где q – общее число входных перемен-
ных схемы:

Синтез Q-покрытия включает: 1) построение таблицы соответствия адресов разрядам
Q-вектора схемы, 2) отметку символами х противоречивых координат по двум строкам a2 ,
3) исключение из таблиц всех столбцов с данными символами, 4) объединение в одну
получившихся двух идентичных строк a2 , 5) результирующий Q-вектор комбинационной
схемы имеет существенно меньшую размерность. Преимущества предложенного Q-мето-
да синтеза вычислительных устройств заключаются в компактности их описания Q-
векторами и в высоком быстродействии адресного моделирования логических элементов,
создаются условия для рыночно привлекательной «квантовой» теории проектирования
цифровых систем на кристаллах, использующей векторно-кубитную форму задания струк-
турных компонентов.

27

4. Минимизация кубитного покрытия схемы
Синтез кубит-вектора схемы по Q-покрытиям компонентов связан с уменьшением

размерности Q-вектора путем исключения несущественных переменных. Существенность
зависит от гальванических соединений входных и внутренних линий цифрового устройства,
которые накладывают ограничения, связанные с противоречивостью сигналов на линиях
связи. Правило минимизации адресного пространства заключается в устранении адресных
кодов, которые создают противоречия по соединенным переменным.

Пусть имеется Q-вектор схемы и его адресное пространство, где переменные b,c,d
(a,b,c) соединены гальванически. Ниже приведены таблицы минимизации адресного про-
странства для получения уменьшенного Q-вектора:

В таблицах наблюдается зеркальная осевая симметрия с инверсией сигналов на коорди-
натах адресного пространства, которая создает свойство, описываемое следующим выра-
жением: ij ijL R 1 L R 1⊕ = → ⊕ = . Данное обстоятельство следует использовать для уменьше-
ния размерности анализируемого пространства в два раза и соответствующего снижения
вычислительной сложности задачи синтеза квантовой вектор-функциональности цифровой
схемы.

Количество различных вариантов взаимодействий на q входных переменных, связанных
с гальваническим соединением сочетаний входных линий, определяется функциональной
зависимостью, граничные значения которой находятся в интервале: .

Существует эффективная процедура для минимизации размерности Q-вектора путем
выявления противоречий в кодах-столбцах, на координатах (Aij), соответствующих гальва-
нически связанным w-переменным по j-параметру. Очевидно, такую процедуру достаточ-
но выполнить на половине адресного пространства , тогда остальная часть
противоречивых столбцов удаляется в соответствии с зеркальным отображением номеров
тех столбцов, которые были удалены из первой половины таблицы кодов адресов:

q

w w
q

i ij ij2 i j 1 j 1
{Q ,Q } (A) (A) 1, i 2 / 2

− = =
= ∅↔ ∧ ⊕ ∨ = ≤ .

Если в столбце Ai на группе из w связанных переменных зафиксировано, что конъюнк-
ция их состояний равна нулю, а дизъюнкция имеет значение единицы, то i-столбец и его
зеркальное отображение удаляются из адресного пространства А. Это автоматичес-
ки приводит к исключению из Q-вектора двух полученных ∅ -координат (в таблицах
обозначены символами х), соответствующих данным столбцам.

Наблюдается также симметрия пространства векторов-расстояний по Хэммингу, полу-
ченных путем xor-взаимодействия между соседними строками таблицы адресного про-
странства, для которых суперпозиция левой и правой частей дает результат

ij ijL R 0 L R 0⊕ = → ⊕ = :

Q 0111 0111 0111 1111 Q 0111 0111 0111 1111
a b 0000 1111 1111 0000 a b 0000 0000

(L,R); (L R) (L R)b c 0011 1100 0011 1100 b c 0000 0000
c d 0110 0110 0110 0110 c d 0000 0000
d a 0101 0101 1010 1010 d a 0000 0000

= =
⊕ ⊕

= ⊕ = ↔ =⊕ ⊕
⊕ ⊕
⊕ ⊕

Целесообразность минимизации логической функции, описанную квант-вектором: мини-
мизация Q-векторов для получения нормальных или скобочных форм не имеет практичес-
кого значения, существенно только уменьшение размерности вектора функционального
описания, что может быть лишь следствием определения несущественности некоторых

28

входных (адресных) переменных. Тем не менее, существует проблема разбиения квант-
вектора на составляющие части меньшей размерности, что связано с имплементацией
функциональности в конструктивные компоненты LUT FPGA. В этом случае выполняется
разбиение Q-вектора на два равных подвектора Q=(L,R), которые соединяются в структур-
но-адресную организацию функциональности с помощью мультиплексора
Q (a L) (a R)= ∧ ∨ ∧ . Если переменная мультиплексирования а=0, то функциональность Q
формируется с помощью ячеек левого L-вектора, в противном случае, когда а=1, значение
функции Q формируется битами правого R-вектора. Алгоритмы разбиения и имплемента-
ции сложных логических функций имеются в каждой промышленной системе синтеза,
моделирования и верификации компонентов SoC.

5. Модель кубитного процессора
Квантовый процессор может быть любой конечной размерности: вектор, матрица, куб.

Для структуры, содержащей два измерения, он представлен матрицей столбцов или Q-
векторов, которые формируют соответствующие им ячейки М-вектора моделирования
(рис. 1, а). Вектор М совместно с Х-вектором кортежей входных переменных примитивов
создает структуру взаимных связей между столбцами-элементами. Адрес ячейки Q-
покрытия, формирующей состояние невходного i-разряда М-вектора, определяется содер-
жимым ячеек М-вектора, найденным по адресам, заданным i-кортежем вектора входных
переменных. Каждый вектор Qi, равно как и кортеж Xi вектора номеров входных линий,
имеет адресную связь с Mi-ячейкой вектора моделирования. Квантовый процессор может
входить компонентом в состав более сложной системы. Квантовая модель процессора
имеет следующую структуру:

В аналитической модели W представлены: 1) Упорядоченная адресно-доступная Q-
совокупность квантовых примитивов, формирующих функциональность системы. 2) Век-
тор моделирования M, связывающий все примитивы в единую систему на основе иденти-
фикации эквипотенциальных линий, создающих формат из существенных переменных:
входных, внутренних и выходных. 3) Вектор X кортежей упорядоченных номеров входных
переменных для каждого квантового примитива, которые формируют адреса доступа к
ячейкам Q-векторов примитивов (рис. 1, а). Вектор количества входных переменных
примитива X формирует адресное пространство или длину каждого Q-покрытия. Его
можно представить в виде таблицы кортежей входных переменных, которые формируют
номера линий вектора моделирования для вычисления адресов доступа к квантовым
покрытиям (рис. 1, б). Таблицу кортежей можно также представить в виде матрицы масок
входов, определенных в формате вектора моделирования, для параллельного формирова-
ния адресов и одновременного считывания выходных состояний примитивов из матрицы Q-
покрытий (рис. 1, в). Из структуры Х-матрицы входных линий видно, что кванты, формиру-
ющие выходы: (8, 9, 10), (11, 12) и (13, 14), можно обрабатывать параллельно. 4) Характери-
стическое уравнение, задающее алгоритм функционирования квантового процессора на
основе использования только операций транзакции (считывание-запись) между Q-вектора-
ми примитивов и вектором моделирования.

Схема цифрового устройства, соответствующая приведенному выше описанию струк-
тур данных: M-вектор моделирования, Х-матрица входов и Q-матрица покрытий, представ-
лена на рис. 2. Она содержит 9 примитивов, каждый из которых имеет Q-покрытие в форме
квант-вектора, реализующего некоторую функциональность. Особенность квантовых струк-
тур данных, представляющих модель цифровой схемы, заключается в полной адресуемос-
ти всех компонентов устройства без гальванических проводных соединений.

29

 а б в
Рис. 1. Кубитные структуры данных кубитного процессора

Для кубитного(only memory-based) процессора имеют место следующие аксиомы: 1) В
квантовом процессоре нет ничего, кроме адресуемой памяти. 2) Вычислительный процесс
представлен единственной универсальной транзакцией между адресуемыми компонента-
ми памяти Mi = Qi[M(Xi)]. 3) Транзакция есть универсальная процедура считывания-записи
данных на непустом множестве адресуемых элементов памяти. 4) Все компоненты памяти
являются online-repaired, благодаря их псевдогальванической адресной (address-connected)
связности. 5) Комбинационные логические элементы (reusable logic), равно как и последо-
вательностные (sequential components), исполняются на элементах памяти. 6) Связывание
всех компонентов в вычислительную систему осуществляется посредством (цифровой)
идентификации псевдо-гальванических соединений вход-выходных переменных компонен-
тов схемы, формирующих вектор моделирования, который хранит состояния всех суще-
ственных линий цифровой системы. 7) Все компоненты кубитной модели цифровой систе-
мы: W=<Q,M,X>, включая функциональные модули, вектор моделирования, вектор адресов
входных переменных, являются online перепрограммируемыми, а значит – online ремонтоп-
ригодными. 8) Примитив цифровой системы имеет формат W=<Q,Y,X>, поскольку отдель-
ный элемент не имеет связей и вектора М, создающих из отдельных компонентов систему.

Рис. 2. Схема цифрового устройства

30

Согласно введенной квантовой модели, описания последовательностных примитивов
(триггеры, регистры, счетчики) можно представлять Q-покрытиями или кубитными векто-
рами, которые имеют псевдопеременные для задания внутреннего состояния. Например,
функциональное описание SR-триггера трансформируется в квантовый примитив, заданный
Q-покрытием, а затем реализуется на адресуемом элементе памяти FPGA с диаграммами
проверки, что представлено на рис. 3.

 Рис. 3. SR-триггер на элементе памяти

Таблица истинности триггера представлена в форме вектора выходных состояний

, который записывается в элемент постоянной памяти, имеющий три
адресных входа, сигнал синхронизации, а также обратную связь, которая соединяет выход
элемента памяти с одним адресным входом. HDL-реализация в системе проектирования
Active HDL 9.1 (Aldec Inc.), а также результаты верификации синтезированного SR-
триггера подтверждают корректность схемотехнического решения.

Другой пример связан с синтезом на элементе постоянной памяти синхронного DV-
триггера. Таблица истинности триггера трансформирована в вектор выходных состояний

, который записывается в элемент памяти, имеющий три адресных
входа, сигнал синхронизации, а также обратную связь, которая соединяет выход примитива
памяти с одним адресным входом. Все упомянутые компоненты, включая временные
диаграммы верификации HDL-кода модели DV-триггера, представлены на рис. 4.

D V Qx Q
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

D
V

Qx
0 1 0 0 0 1 1 1 Q

 Рис. 4. DV-триггер на элементе памяти

На рис. 5 представлены модели двух последовательностных примитивов: двухразряд-
ных регистра и счетчика. Их отличие заключается в задании двух выходов, состояния
которых формируются одним и тем же множеством входных переменных.

Регистр на переменных (C,D,Q1,Q2,Y1,Y2) выполняет функцию сдвига вправо информа-
ции от входа D по разрядам: (D-Y1-Y2), при R=1, и сохранение данных при C=0. Счетчик,
определенный на переменных (R,C,Q1,Q2,Y1,Y2), реализует функцию инкремента по разря-
дам (Y1,Y2), при RC = (11), а также режим хранения информации, при (R or C = 0). Таким
образом, для реализации двухразрядного регистра или счетчика необходимо два 16-бито-
вых элемента пямяти, работающих синхронно от одних и тех же входов:

31

C
D
Q1
Q2

0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1

Y1
Y2

R
C
Q1
Q2

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

Y1
Y2

Здесь каждая квантовая модель представлена двумя векторами, где каждый из них
формирует функцию разряда регистра или счетчика, как состояние ячейки вектора, получа-
емое при формировании адреса A входными переменными: {Y1, Y2} = A(C, D, Q1, Q2),
{Y1, Y2} = A(R, C, Q1, Q2) соответственно. Моделирование примитива сводится к триви-
альной процедуре формирования адреса, по которому находится состояние выхода прими-
тива, как содержимое ячейки квантового вектора.

C 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
D 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Q1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Q2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Y1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1
Y2 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1

R 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Q1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Q2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Y1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
Y2 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

Рис. 5. Memory-based модели регистра и счетчика

6. Алгоритм моделирования кубитных покрытий цифровых компонентов
Использует memory-based only модели для адресного анализа цифровых систем в целях

их верификации. Реализация таких структур связана с ячейками памяти (LUT (Look Up
Table) FPGA), которые способны хранить информацию в виде Q-вектора, где каждый бит
или разряд имеет свой адрес, отождествляемый с входным словом. Программная реализа-
ция алгоритма моделирования таких структур становится конкурентоспособной по быстро-
действию на рынке проектирования цифровых систем на кристаллах за счет адресации
функциональных примитивов.

Одномерный Q-вектор описания функциональности можно привязать к выходной (внут-
ренней) линии устройства, состояние которой формируется в процессе моделирования
рассматриваемого Q-покрытия. Тогда регистровая реализация комбинационного устрой-
ства может быть представлена вектором моделирования М, невходные линии которого
непосредственно связаны с выходами функциональных элементов. Упорядоченные значе-
ния входных переменных задают адрес бита Q-вектора, формирующего состояние рас-
сматриваемой невходной линии. Если функциональности описываются одновыходовыми
примитивами, то каждый из них можно отождествить с номером или координатой невход-
ной линии, на которую нагружен данный элемент. Если функциональность многовыходовая,
то Q-покрытие представляется матрицей с числом строк, равным числу выходов. Эффект
от такого примитива заключается в параллелизме одновременного вычисления состояний
нескольких выходов за одно обращение к матрице по текущему адресу. Данное обстоя-
тельство является существенным аргументом в пользу синтеза обобщенных кубитов для
фрагментов цифрового устройства или всей схемы в целях их параллельной обработки на
одном временном такте. Модель функционирования цифровой структуры упрощается до
вычисления двух адресов при формировании вектора моделирования)]X(M[QM iii = путем
исключением сложного адреса выхода примитива в процессе записи состояний выходов в
координаты М-вектора.

32

Алгоритм моделирования квантовых примитивов цифровой системы использует анали-
тическую структуру (k – число входных переменных i-примитива, * – операция конкатена-
ции битов, А – адрес бита Q-вектора):

Данному аналитическому выражению можно поставить в соответствие следующие
пункты алгоритма формирования двоичных состояний M-вектора моделирования цифровой
схемы, изображенные на рис. 6:

Рис. 6. Алгоритм моделирования квантовых покрытий цифровой системы
0) Инициирование начальных условий и параметров. 1) Задание очередного набора

двоичных состояний на входных координатах вектора моделирования. 2) Определение i-
номера очередного обрабатываемого примитива путем выполнения операции инкременти-
рования. 3) Выполнение процедуры конкатенации состояний битов M-вектора, соответ-
ствующих номерам вектора входных переменных Xi. Считывание соответствующего бита
из функционального кубит-покрытия Qi по двоичному вектор-адресу сконкатенированных
битов M-вектора. Занесение считанного из кубита бита в вектор моделирования M по
адресу i. (M-вектор может иметь координаты с символами X, что дает возможность
выполнять троичное моделирование цифровых устройств для решения задач тестирования
и верификации.) 4) Если не все примитивы обработаны i<n, выполняется переход к пункту 2
алгоритма. 5) Если не все входные наборы обработаны t<m, выполняется переход к пункту
1. 6) Конец моделирования.

Исходя из характеристического уравнения квантовой модели цифровой системы можно
сделать вывод, что современный <MQT> (Memory-Quant-Transaction) процессор следует
представлять как адресную организацию структуры функциональных примитивов памяти
без гальванических или проводных связей, на которых определены адресные транзакции
данных во времени и пространстве для достижения поставленной цели.

На рис. 7 представлена схема с триггерами и комбинационной логикой, которая также
описана в виде элементов памяти, куда занесены выходные состояния таблицы истинности
каждого логического элемента. Структуры данных, необходимые для моделирования циф-
рового устройства, сведены в таблицу, где основными компонентами являются: М – вектор
моделирования или состояния занумерованных линий, который в данном случае имеет 5
входных, 6 внутренних и выходных линий, состояния которых подлежат определению; Х –
вектор кортежей номеров входных линий примитивов, которые необходимы для формиро-
вания адреса в целях извлечения по нему состояния выхода элемента Qi, функциональность
которого задается Q-вектором.

33

L 1 2 3 4 5 6 7 8 9 10 11
M 0 0 1 1 1 1 0 1 1 1 1

. 2 1 6 7 10 11
X 3 6 4 8 7 9

. 9 8
Q 0 0 0 0 1 0

. 1 0 0 1 1 1

. 1 0 0 1 1 0

. 0 1 1 1 1 0

. 0 0

. 0 1

. 0 1

. 1 1

Рис. 7. Memory-based комбинационная схема с триггерами

Пример выполнения алгоритма моделирования схемной квантовой структуры. Все при-
митивы должны быть упорядочены по принципу: очередной элемент анализируется, если
все предшественники для него были обработаны. В процессе моделирования адресно
извлеченное состояние ячейки текущего Q-покрытия заносится в разряд Mi вектора моде-
лирования. Результаты последовательной обработки всех Q-векторов схемной структуры
формируют состояния линий М-вектора для приведенного выше примера ячейки (6 – 11).
Первоначальные состояния неопределенностей на псевдовходах функциональных прими-
тивов доопределяются сигналами нуля или единицы в зависимости от внутренней техноло-
гической культуры компании, предоставляющей промышленные средства моделирования
и верификации. Количество входных переменных примитива q связано с длиной Q-вектора
соотношением: . Правильность работы алгоритма моделирования была вери-
фицирована на тестовых и реальных схемах с привлечением средств Active HDL 9.1 (Aldec
Inc.). Особенность структурно-функционального задания цифровой системы заключается в
представлении всех примитивов элементами памяти, куда записываются Q-векторы вы-
ходных состояний.

Таким образом, можно сделать следующие выводы: 1) Любые структурные компонен-
ты вычислительных устройств, комбинационные и/или последовательностные, а также
системы в целом можно описывать кубитными Q-векторами и реализовывать в элементах
памяти FPGA, CPLD или VLSI. Это предоставляет рынку электронных технологий воз-
можность не использовать комбинационную reusable логику при синтезе вычислительных
устройств, которая доставляет разработчикам серьезные проблемы, связанные с тестиро-
ванием, верификацией и ремонтом жесткой проводной реализации цифровых изделий. 2)
Memory-based интерпретативное адресно-ориентированное моделирование комбинацион-
ных и последовательностных примитивов цифровых устройств становится соизмеримым
по быстродействию с компилятивным анализом дискретных объектов. Кроме того, стано-
вится возможным реализовывать на программируемых логических устройствах аппарат-
ное моделирование цифровых систем, где комбинационные и последовательностные функ-
циональные примитивы будут представлены стандартными элементами памяти, в которые
зашиваются Q-векторы.

7. Анализ вычислительных структур
Сигналы синхронизации доставляют определенные неудобства для описания моделей

последовательностных компонентов (триггеры, регистры, счетчики) и реализации алгорит-
мов анализа. Это связано со схемотехническим исполнением управления по переднему или
заднему фронту, которые разрешают выполнение транзакций между master-slave компо-
нентами. Другими словами, синхронные примитивы имеют два последовательно соединен-
ных элемента, ориентированные на низкий и высокий уровни сигналов записи данных в
первую и вторую ступени соответственно. Однако для логического моделирования учет
подробностей, связанных со схемотехническими решениями, может существенно замед-
лить время анализа цифровых схем. Поэтому здесь необходимы логически адекватные
модели реальных процессов, приводящие к повышению быстродействия алгоритмов обра-
ботки компонентов. При этом накладывается ограничение, связанное только с адресным

34

характером анализа всех компонентов схемы. Для обеспечения возможности рассмотре-
ния синхровхода, как логической переменной, формирующей адрес квантового вектора,
предлагается модель разбиения последовательностного примитива на два элемента: 1)
Логический квант выдачи разрешающего сигнала при формировании переднего (заднего)
фронта в двух временных модельных тактах. 2) Квант реализации штатной функционально-
сти (триггера регистра, счетчика) последовательностного компонента. Таким образом,
модель синхронного D-триггера может быть описана в форме двух Q-покрытий, адресно
вычисляющих состояния выходов:

CLK(t 1)
CLK(t) 0 1 0 0 C(t)

Q(t 1)
D(t)
C(t)

0 0 0 1 0 0 1 1 Q(t)

C учетом изложенного выше модель цифровой схемы с двумя сигналами синхронизации,
представленная на рис. 8, будет иметь структуры данных, состоящие из совокупности Q-
покрытий, которые формируют текущий вектор моделирования M, но с учетом значений
координат данного вектора в предыдущий момент времени M(t-1). Увеличение числа
переменных за счет введения двух элементов синхронизации уменьшает совокупную
размерность таблицы квантовых векторов, которая при 7 переменных будет иметь 56
координат.

L A C1 B C2 K1 Q1 Q2 Y K2 Q3 Q4
Mt 1 1 0 1 0 0 0 0 0 0 0 0
Mt 1 1 1 1 1 1 1 1 1 1 1
X C1

t 1 Q1
t 1 Q2

t 1 Q1 C2
t 1 Q3

t 1 Q4
t 1

. . . . C1
t A B Q1 C2

t Y Q3
. K1 K1 . . K2 K2

Q 0 0 0 0 0 0 0
. . . . 1 0 0 0 1 0 0
. . . . 0 0 0 0 0 0 0
. . . . 0 1 1 1 1 1 1
. 0 0 . . 0 0
. 0 0 . . 0 0
. 1 1 . . 1 1
. 1 1 . . 1 1

Рис. 8. Синхронизированная структура триггера

Если не вводить две дополнительные переменные (элементы синхронизации), то объем
памяти для Q-покрытий будет равен 80 ячейкам (рис. 9). Данная схемная реализация
максимально ориентирована на структуры данных промышленных средств моделирования
и верификации. Однако квантовые векторы для задания функциональностей триггеров
создают необходимые условия для повышения быстродействия интерпретативного анали-
за, тестирования и диагностирования схемных компонентов.

Проблема уменьшения совокупного объема Q-покрытий схемы связана с количеством
переменных, формирующих адреса координат Q-вектора. Естественно, что любое разбие-
ние числа переменных на два равных упорядоченных подмножества дает возможность
существенно уменьшить размерность памяти для записи уже двух Q-векторов. В общем
случае функциональная зависимость уменьшения размерности исходного Q-вектора, опре-
деленного на n-переменных, при делении на 2 подсхемы с равным числом результирующих
переменных (n/2), имеет следующий вид:

n n n
n (n/2 1) n /2 1

n/2 n/2 n/2 n/2 1

2 2 2Q 2 2 .
2 2 2х2 2

− + −
+= = = = =

+

35

11.11....
11.11....
11.11....
11.11....
11.11....
11.11....
00.00....
11.11....
00.00....
00.00....
11.11....
00.00....
00100....
00000....
00000....
00000....Q

t
2Ct

2C.t
1Ct

1C....

1t
2C1t

2C.1t
1C1t

1C....
3QY2QBA....

1t
4Q1t

3Q1Q1t
2Q1t

1Q....X
111111111tM
0000001011tM
4Q3QY2Q1Q2CB1CAL

−−−−

−−−−

−

Рис. 9. Схема с D-триггерами на основе внутренней синхронизации

Например, разбиение вектора из восьми переменных на два Q-покрытия из 4 перемен-
ных уменьшает объем памяти в 8 раз. Однако следует иметь ввиду, что каждое разбиение
функционального модуля на k подсхем относительно внешних входов потребует k дополни-
тельных d-циклов для вычисления состояния выхода всей схемы T d(k 1).= + Снижение
быстродействия разбиенной функциональности является платой за существенное умень-
шение объема памяти для хранения структур данных цифровой системы. В общем случае
разбиение функциональности на k одинаковых частей приводит к получению следующей
зависимости выигрыша объема памяти от числа разбиений на подмножества вектора

входных переменных: .k/nn2
k
1

k/n2k

n2Q −×=
×

=

Здесь параметр разбиения k принимает значения, кратные степени двойки: 2, 4, 8, 16.
Однако значение k не должно быть более, чем n/2. Следует заметить, что необязательно
количество разбиений не обязательно должно принимать значения, кратные степени двой-
ки. В общем случае, на векторе входных переменных может существовать m разбиений,
каждое из которых имеет более одной переменной. При этом выполняется условие разбие-
ния, что сумма всех переменных, участвующих в разбиениях, не может быть больше n:

.nmk...ik...2k1k,
mk2ik2k2k2

n2Q
......21

=+++++
+

=
++++

Формула показывает выигрыш от разбиения функциональности в виде отношения раз-
мерности исходного квант-вектора к совокупному объему Q-векторов, полученных после
разбиения. Чтобы оценить эффективность разбиения функциональности на схемные фраг-
менты, необходимо учитывать не только уменьшение объема памяти для хранения струк-
тур данных, но и негативные последствия, связанные со стоимостью анализа увеличенного

36

количества схемных компонентов, которое регламентируется в каждом конкретном слу-
чае коэффициентом d:

.
)mk2ik2k2k2(md

n2Q
......21 +++++××

=

Подводя итог в части модификации теории исправного моделирования (fault-free) цифро-
вых систем, можно отметить следующие факты. Автомат моделирования синхронных
цифровых устройств, как правило, представлен моделью Мура:

)].t(S),t(X[f)t(Y
)];1t(S),t(X[f)t(S

=
−=

Здесь фигурируют входные (Х) и внутренние состояния автомата в двух соседних
временных фреймах S(t), S(t-1), а также правила определения выходных значений Y(t) для
инициирования вычислительных процедур. Предлагается модификация упомянутой модели
автомата Мура для анализа цифровых систем, суть которой заключается в замене функци-
ональных отношений адресными (A) операциями:

)].t(S),t(X[A)t(Y
)];1t(S),t(X[A)t(S

=
−=

Определенный выше адресный или квантовый автомат позволяет: 1) Избежать жестких
гальванических межсоединений между элементами комбинационных и последовательнос-
тных схем при их аппаратной имплементации только в элементы памяти. 2) Получить
свойство гибкой заменяемости компонентов цифровой системы в режиме online, благодаря
их адресуемости. 3) Существенно упростить все процессы моделирования, верификации и
тестирования путем использования только процедур вычисления адреса компонента схемы
или ячейки его памяти. 4) Унифицировать процессы проектирования цифровых изделий
путем их сведения к формированию функциональностей на основе вычисления адресов или
к транзакциям на элементах памяти. 5) Повысить эффективность процедур моделирования
цифровых схем за счет уменьшения объема интерпретативных моделей и упрощения
способа их обработки, когда вместо исчерпывающего анализа таблиц предлагается вы-
числение адреса ячейки квантового вектора. 6) Выполнять все вычислительные процедуры
на основе использования квантовых покрытий и вектора моделирования, заданного в двух
соседних автоматных тактах, согласно определению квантового автомата. 7) Технологи-
чески проще становится использовать инфраструктуру [6, 7] стандартов тестопригодного
проектирования (IEEE 1500, 1149) для покомпонентного тестирования, диагностирования и
восстановления работоспособности адресно доступных функциональных блоков в режиме
online.

8. Структура облачного сервиса QuaSim для моделирования цифровых
устройств
QuaSim представляет собой средство для анализа, тестирования и верификации цифро-

вых проектов небольшой размерности и предназначено для использования в учебном
процессе в качестве облачного сервиса, доступного для студентов с любого мобильного
устройства или компьютера.

Цель – существенное повышение качества учебного процесса путем предоставления
технологичных микросервисов анализа цифровых устройств с одновременной визуализаци-
ей схем, тестов, результатов моделирования и таблиц истинности функциональных элемен-
тов.

Задачи: 1) Создание структуры облачного моделирования цифровых устройств на плат-
форме компьютинговых сервисов Google. 2) Разработка модуля (микросервиса) Q-element,
реализующего создание модели и визуализацию логического или функционального прими-
тива схемы. 3) Проектирование модуля генерирования кубитных моделей примитивов и
более сложных цифровых устройств, а также средств их оперативной визуализации. 4)
Разработка модуля или панели управления, интегрирующего симулятор, генератор логи-
ческих элементов, схемных конструкций и вход-выходных портов. 5) Разработка собствен-
но модуля для анализа цифровых схем на основе рекурсивной обработки логических

37

элементов. 6) Создание служебных библиотек для хранения: готовых функциональных
элементов, сложных цифровых схем, тестов и результатов их анализа, а также служебной
информации. 7) Тестирование и верификация облачного сервиса Q-simulator, предназначен-
ного для интерпретативного моделирования цифровых устройств.

Сущность квантового метода анализа заключается в адресной реализации всех функци-
ональных компонентов цифровых систем и структур данных, что дает возможность суще-
ственно повысить быстродействие интерпретативного моделирования и качество обслу-
живания проектов за счет быстрой замены некондиционных логических элементов путем
их переадресации.

Структура облачного сервиса включает следующие основные микросервисы: 1) Q-
element генерирует квантовые описания логических элементов в структуре цифровой функ-
циональности. 2) Модуль View выполняет визуализацию схемных элементов, портов вхо-
дов и выходов на экране монитора. 3) Модуль Collapse управляет окнами монитора и их
размерами при помощи соответствующих иконок. 4) Контроллер Split визуализирует работу
всех контроллеров при сборке схемы на экране, а также осуществляет масштабирование
деталей проекта. 5) Функция Evaluate формирует состояние выхода текущего элемента
путем выбора содержимого из ячейки кубита по ее адресу. 6) Модуль Q-sim реализует
собственно алгоритм моделирования всех линий схемы путем построения на первом шаге
рекурсивной модели для последовательно-параллельной обработки элементов. На втором
шаге вычисляются состояния всех выходов логических элементов. Моделирование закан-
чивается после обработки всех тестовых входных последовательностей. Если схема
имеет глобальные или локальные обратные связи, то моделирование осуществляется до
фиксации одинаковых значений сигналов на всех линиях схемы. Если схема не устанавли-
вается в устойчивое состояние на входных наборах, то фиксируется генераторный режим
после выполнения n (=20) итераций. В этом случае всем изменяющимся линиям присваива-
ется значение двоичной неопределенности Х={0,1}. 7) Модуль управления библиотекой
элементов, схем и проектов осуществляет считывание, запись и подключение фрагментов.
8) Модуль временных диаграмм осуществляет визуализацию теста с выходными сигнала-
ми на мониторе в форме непрерывных сигналов, разделенных на такты в абсолютном или
модельном времени. 9) Все модули облачного сервиса запрограммированы на языке Swift,
операционная система OSX 10.9, компилятор XCode 7. Количество исходных файлов 36,
общее число строк кода – 1450.

На рис. 10 представлена визуализация результатов графического проектирования схемы
с триггерами на мониторе компьютера. Данная схема полностью соответствует функцио-
нальности, представленной на рис. 7. Она содержит четыре входных порта для подачи
рабочих или тестовых воздействий, а также два выходных порта. Структура содержит
четыре логических элемента и два триггера. Мнемоническое описание компонентов схемы
приведено к универсальной форме прямоугольника и различается только номером прими-
тива в составе устройства, а также типом функциональности, которая задается кубит-
вектором, представленным десятичным числом.

Рис. 10. Скриншот структуры с триггерами

38

В схеме, представленной на рис. 10, элементы имеют порядковые номера (в верхней
части) и целые числа для идентификации функциональностей: 0/6 – 0110, 1/1 – 0001, 2/1 – 0001,
3/7 – 0111, 4/143 – 11110001, 5/226 – 01000111. Здесь двоичный вектор соответствует
десятичному эквиваленту числа для задания функциональности. Поскольку кубит-вектор не
имеет в явном виде задания входных наборов, то его можно рассматривать как неявную или
компактную форму теоретико-множественной по сути таблицы истинности. Зачем явно
указывать входные значения, если они составляют строго последовательную адресацию
выходных значений? Таким образом, таблица истинности, как совокупность входных сигна-
лов и соответствующих им выходных значений всегда проигрывает перед кубит-векторной
формой представления функциональностей в плане объема и быстродействия анализа дан-
ных. Не существует принципиальных различий между описаниями комбинационного элемен-
та, схемы или последовательностного примитива, поскольку все они формально представле-
ны кубит-векторами, которые помещаются в адресуемую память. Более того, все примити-
вы схемы также являются адресуемыми, а структура схемы может быть описана в виде
кубит-вектора. Таким образом, можно прийти к такой реализации вычислительного устрой-
ства, где нет ничего, кроме адресной памяти или кубитных векторов различной длины, в
которых функциональности определяются упорядоченными наборами нулевых и единичных
сигналов. Преимущества данного сервиса QuaSim кубитного описания и моделирования
цифровых устройств заключаются в следующем: 1) Все функциональные элементы и схемы
задаются Q-векторами, что унифицирует процедуры синтеза и анализа цифровых устройств.
2) Технологически просто менять или корректировать функциональность схемы или любого
примитива путем замены отдельных битов Q-вектора. 3) Унификация кубитной формы
описания примитивов схемы дает возможность применить к ним единственную процедуру
анализа функциональностей, которая сводится к вычислению адреса)]X(M[QM iii = , что
делает процесс программирования облачного сервиса QuaSim технологически простым в
исполнении и не зависящим от функциональной и структурной сложности цифровых структур.
4) Простой и понятный начинающему пользователю графический интерфейс делает облач-
ный сервис конкурентоспособным на рынке образовательных услуг, где сложные и тяжело-
весные средства моделирования от ведущих компаний планеты являются недоступными для
университетов из-за их высокой стоимости, а для студентов – времязатратными по сложнос-
ти подготовки HDL-спецификаций при рассмотрении небольших учебных проектов. 5) Уни-
фикация формы описания примитивов создает условия для технологичного решения задач
синтеза, моделирования неисправностей, тестирования, верификации и диагностирования,
основанные на операциях с кубит-векторами. 6) Недостатком кубитной или квантовой техно-
логии описания и анализа цифровых структур можно считать некоторое уменьшение быстро-
действия моделирования по сравнению с существующими промышленными компиляторами,
для ASIC и VLSI проектов, где объем reusable logic является доминирующим для достижения
высокого быстродействия.

Структура взаимодействующих компонентов облачного сервиса QuaSim представлена на
рис. 11. Квантовое или кубитное представление модели цифрового устройства вместе с
интерпретативным симулятором составляют ядро системы, интегрированной в большие
даные киберпространства или Интернета. Это дает возможность использовать в качестве
исходных данных открытые спецификации и тестбенчи, описанные на языках VHDL, Verilog.
Такие данные и/или тестовые примеры имеются практически во всех ведущих компаниях,
университетах и тематических конференциях IEEE, TTTC, ISCAS. Кроме того, погружение
Q-sim сервиса в интернет-пространство предполагает также выгрузку результатов его рабо-
ты, связанную с анализом и синтезом учебных или рыночно ориентированных проектов в
сервисы хранения данных на платформах Google, Amazon, Microsoft, IBM, Facebook. Есте-
ственно, что интеграция облачного сервиса с киберпространством предполагает наличие
парсер-микросервисов для преобразования спецификаций из языков описания аппаратуры во
внутренний язык QuaSim. Должно также существовать и обратное преобразование данных из
кубитного представления в стандарты HDL-языков. Парсеризация обеспечивает вомож-
ность использования открытых в интернете проектов для их изучения и сравнения в системе
моделирования Q-sim, а также делает доступными внутренние проектные решения QuaSim
для всех желающих на рынке образовательных сервисов.

39

Рис. 11. Облачный сервис моделирования цифровых устройств

Блок Security контролирует доступ пользователей в целях их статистического учета и
предполагает аутентификацию каждого на основе пароля, фамилии, имени, дополненной
любым валидным (корпоративным) атрибутом из списка: {электронная цифровая подпись,
е-mail, цифровой ключ, номер телефона}.

Тестирование и верификация облачного сервиса моделирования цифровых систем осу-
ществлялись отдельно для каждого микросервиса, а затем во взаимодействии всех моду-
лей.

1) Проверка правильности генерирования логических и более сложных функциональных
элементов.

2) Проверка структурного синтеза цифровой схемы и средств визуализации.
3) Верификация и тестирование алгоритмов двоичного и троичного синхронного интер-

претативного исправного моделирования входных воздействий на 40 схемах, комбинацион-
ного и последовательностного типов. При этом использовались тестовые наборы, алгорит-
мически генерируемые и составленные пользователем.

4) Проверка сервисных модулей, обеспечивающих работоспособность основных микро-
сервисов: библиотеки элементов и схем, аутентификация пользователя, модуль формирова-
ния статистических данных по проектам и пользователям.

5) Верификация интерфейсных микросервисов, обеспечивающих интеракции между об-
лачными back-end и пользовательскими front-end модулями.

9. Заключение
Сущность предлагаемого научно-технологического исследования заключается в созда-

нии векторных структур данных и кубитных методов синтеза, тестирования и моделирова-
ния, интегрированных в облачную инфраструктуру сервисного обслуживания компонентов
цифровых систем на кристаллах в целях повышения качества изделий и выхода годной
продукции за счет адресуемости всех вычислительных процессов и явлений. Основная
инновационная идея Memory-Address-Transaction модели вычислений заключается в син-
тезе и анализе векторных цифровых структур на основе адресуемых элементов памяти,
исключающих использование reusable or new logic. Трудно создать двумерный регистр,
соответствующий матрице смежностей или таблице истинности, поэтому привести описа-
ние функции и структуры к единому одномерному формату, означает – технологично
решать все задачи синтеза и анализа для функциональностей и графов в кубитно-векторной
метрике, создающей memory-driven computing на основе выполнения параллельных логи-
ческих операций.

40

Предлагается методология проектирования цифровых схем, на основе элементов памя-
ти для синтеза компонентов операционного и управляющего автоматов, составляющих
операционное устройство.

Показаны основы кубитно-векторного синтеза путем суперпозиции кубитных покрытий
black box функциональностей, имплементируемых в элементы памяти, что дает возмож-
ность существенно повысить быстродействие средств моделирования, тестирования и
верификации, а также упростить процессы создания реальных и виртуальных компьютер-
ных систем.

Предложены кубитные структуры данных для моделирования и тестирования цифровых
систем, которые дают возможность существенно упростить реализацию алгоритмов и
повысить их быстродействие за счет адресуемости функциональных квантов и параллель-
ности обработки примитивов.

Показана реализация вычислительных структур и процессов на основе использования
адресного автомата, который дает возможность привлекать инфраструктуру стандартов
тестопригодного проектирования для повышения выхода годной продукции, за счет online
восстановления работоспособности функциональных примитивов.

Практическая значимость кубитной методологии синтеза и анализа цифровых систем
заключается в имплементации процессора на основе элементов памяти, что делает его
однородным по структуре функциональных примитивов и доставляет технологические
удобства при реализации процессов проектирования, производства и эксплуатации, вклю-
чая верификацию, встроенные тестирование, диагностирование и ремонт в режиме online за
счет использования универсальных адресуемых spare-компонентов памяти. Кроме того,
моделирование проектируемых вычислителей на основе адресуемых моделей элементов
делает данную процедуру простой за счет регулярных структур данных и использования
операции транзакции на элементах памяти, а также быстродействующей, благодаря парал-
лельной обработке массивов однотипной памяти. Имплементация кубитных моделей опи-
сания цифровых компонентов и систем работает на увеличение выхода годной продукции,
повышение надежности вычислительных изделий, снижение стоимости проектирования и
изготовления, а также автономное восстановление работоспособности в режиме online без
участия человека.

Предложен облачный сервис QuaSim для моделирования и верификации цифровых
систем на основе транзакций между адресуемыми компонентами памяти для реализации
любой функциональности. Описан новый подход к синтезу и анализу цифровых систем,
использующий векторную форму (квант) задания комбинационных и последовательност-
ных структур для их имплементации в элементы памяти, что существенно отличается от
общепринятой теории проектирования дискретных устройств на основе таблиц истинности
компонентов. Используются квантовые или кубитные структуры данных [1-5] для реализа-
ции вычислительных процессов в целях повышения быстродействия анализа цифровых
систем и уменьшения объемов памяти на основе унарного кодирования состояний входных,
внутренних и выходных переменных и имплементации кубитных векторов в элементы
памяти FPGA, реализующих комбинационные и последовательностные примитивы.
Список литературы: 1. Metodi T., Chong F. Quantum Computing for Computer Architects. Synthesis
Lectures on Computer Architecture. Morgan & Claypool. 2006. 154 p. 2. Stenholm Stig, Kalle-Antti Suominen.
Quantum approach to informatics. John Wiley & Sons, Inc. 2005. 249p. 3. Hahanov V.I., Wajeb Gharibi,
Litvinova E.I., Shkil A.S. Qubit data structure of computing devices // Electronic modeling. 2015. № 1. P.76-
99. 4. Vladimir Hahanov, Tamer Bani Amer, Ivan Hahanov. MQT-model for Virtual Computer Design // Proc.
of Microtechnology and Thermal Problems in Electronics (Microtherm). 23-25 June 2015. P. 182-185. 5.
Hahanov V.I., Litvinova E.I., Chumachenko S.V. et al. Qubit Model for solving the coverage problem // Proc.
of IEEE East-West Design and Test Symposium. Kharkov. 14-17 September, 2012. P.142 – 144. 6. Zorian Y.
Shoukourian S. Test solutions for nanoscale Systems-on-Chip: Algorithms, methods and test infrastructure.
Computer Science and Information Technologies (CSIT), 2013. P. 1 – 3. 7. Zorian Y., Shoukourian S.
Embedded-memory test and repair: infrastructure IP for SoC yield. Design & Test of Computers, IEEE
(Volume: 20, Issue: 3). P. 58 – 66. 8. Dugganapally I.P., Watkins S.E., Cooper B. Multi-level, Memory-Based
Logic Using CMOS Technology. VLSI (ISVLSI), 2014 IEEE Computer Society Annual Symposium on. Tampa,
FL. P. 583-588. 9. Yueh W., Chatterjee S., Zia M., Bhunia S., Mukhopadhyay S. A Memory-Based Logic Block
With Optimized-for-Read SRAM for Energy-Efficient Reconfigurable Computing Fabric. Circuits and Systems
II: Express Briefs, IEEE Transactions on. Vol. 62. Issue: 6. P. 593-597. 10. Matsunaga S., Hayakawa J., Ikeda

41

S., Miura K., Endoh T., Ohno H., Hanyu T. MTJ-based nonvolatile logic-in-memory circuit, future prospects
and issues. Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE ’09.P. 433 – 435. 11.
Harada S., Xu Bai, Kameyama M., Fujioka Y. Design of a Logic-in-Memory Multiple-Valued Reconfigurable
VLSI Based on a Bit-Serial Packet Data Transfer Scheme. Multiple-Valued Logic (ISMVL), 2014 IEEE 44th
International Symposium on. P. 214 – 219. 12. Hahanov V.I., Tamer Bani Amer, Chumachenko S.V.,
Litvinova E.I. Qubit technology analysis and diagnosis of digital devices // Electronic modeling. 2015. Vol.
37, № 3. P. 17-40. 13. Melikyan V.Sh. A method of eliminating false paths during statistical static analysis of
timing delays of digital circuits // Elektronica i svyaz. 2009. Vol. 2-3, No. 1. P. 93-96. 14. Melikyan V.Sh.,
Vatyan A.O. Interconnections model delays for the logic analysis of ECL circuits //S UAB, Vol. 2, Computer
Engineering, Moscow, 1997. P. 187-194. 15. Хаханов І.В., Литвинова Є.І. Синтез та аналіз «квантових»
моделей цифрових систем // АСУ та прилади інформатики. 2015. Вип. 172. С. 56–70.

Поступила в редколлегию 14.01.2016
Тamer Bani Amer, аспирант ХНУРЭ. Научные интересы: квантовые вычисления, тестиро-
вание и диагностика цифровых систем. Адрес: Украина, 61166, Харьков, пр. Науки, 14, тел.
+ 3805770-21-326.
Хаханов Иван Владимирович, студент факультета компьютерной инженерии и управле-
ния ХНУРЭ. Научные интересы: техническая диагностика цифровых систем, программи-
рование. Увлечения: горные лыжи, английский язык. Адрес: Украина, 61166, Харьков, пр.
Ленина, 14, тел. +380 57 70-21-326.
Литвинова Евгения Ивановна, д-р техн. наук, профессор кафедры АПВТ ХНУРЭ. Науч-
ные интересы: техническая диагностика цифровых систем, сетей и программных продук-
тов. Адрес: Украина, 61166, Харьков, пр. Ленина, 14, тел. +380 57 70-21-326. E-mail:
kiu@kture.kharkov.ua.
Емельянов Игорь Валерьевич, н.с. кафедры АПВТ ХНУРЭ. Научные интересы: техничес-
кая диагностика цифровых систем, сетей и программных продуктов. Адрес: Украина,
61166, Харьков, пр. Науки, 14, тел. + 3805770-21-326.

