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MEASUREMENT GEOMETRY, SIGNAL MODELS AND ALGORITHMS
FOR RADIO IMAGE RECOVERY IN SYNTHESIZED APERTURE
RADARS USING CONTINUOUS LFM SIGNALS

This article analyzes the methods of forming radar images on the surface formed by SAR with a continuous
LFM probing signal. It is of interest to determine the main algorithmic operations performed on the "raw" data after
their registration in the receivers. The geometry of measurements, the sounding signal and the features of the
formation of "raw" data that will determine further processing will be considered. To compare the quality of work of
different algorithms, a simulation model of the formation of radar images in RSA with the processing of continuous
LFM signals has been developed. The aim of the work is to create a universal geometric basis for building effective
measurement schemes and signal processing algorithms in radio engineering systems. The research tasks include:
1) formalization of the problem of determining coordinates based on the results of direction-finding measurements;
2) construction of a mathematical model of the mutual location of objects in three-dimensional space;
3) determination of the influence of geometric factors on the measurement accuracy; 4) analysis of single and
multiple observation options. The results obtained allow establishing an analytical relationship between the
measurement parameters and the configuration of the spatial scene, which ensures an increase in the accuracy of
coordinate determination. Field of application: the results can be used to increase the efficiency of navigation,
reconnaissance and monitoring systems, as well as in the tasks of tracking moving objects and building situational
awareness systems.

Keywords: measurement geometry; direction finding; coordinate determination; three-dimensional model;
radio measurement system.

Relevance

In today's environment of active development of unmanned aerial vehicles, monitoring and
reconnaissance systems, there is a growing need for accurate determination of the coordinates
and trajectories of radio emission sources. Reliable positioning is critical to ensuring the
autonomy and effectiveness of such systems. Most measurement tasks require consideration of
the spatial geometry of the scene, but existing approaches often simplify the model to two
dimensions, which limits accuracy. Building a three-dimensional geometric model allows for
adequate consideration of the influence of the location of receivers and signal sources. This, in
turn, improves data processing algorithms and reduces coordinate determination errors.

The analysis of the influence of space configuration on measurement results during multiple
observations is particularly relevant. Understanding geometric constraints allows for the rational
placement of sensors and optimization of observation trajectories. The creation of a universal
spatial model is an important prerequisite for the construction of high-precision radio
measurement systems.

Therefore, the study of measurement geometry is of great importance for the development of
modern radio engineering and navigation technologies.

© Kovalchuk D., Zhyla O., 2025
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Measurement geometry in the formation of radar images
in the SAR from an aircraft

To illustrate the principle of forming an "artificial” aperture, we will use the geometry
shown in Fig. 1 [1].
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Fig. 1. Geometry of surface scanning by radar implementing the antenna aperture synthesis algorithm:
a — spatial position of the beam of a non-synthesized antenna; b — distance traveled by the signal
during the movement of the carrier (taken from [1])

The idea of forming a synthesized aperture is the same for both pulsed and continuous wave
radars. First, electromagnetic waves are emitted from an onboard antenna mounted on a moving
platform (see Fig. 1 Antenna SAR) in the direction of the surface within the non-synthesized
directional pattern, over a wide range of angles. The platform moves in a straight line at
a speed V, along a coordinate conventionally called Azimuth. The coordinate is called Azimuth

because the synthesis of the antenna reduces the width of the directional pattern at the azimuth
angle in a spherical coordinate system.

Thus, traditionally in the literature, SAR resolution or image characteristics are associated
with the conventional azimuth coordinate. At the same time, all radar images are converted
to Cartesian surface coordinates with units of measurement in meters. Another coordinate that
plays an important role in measurements is the ground range (in Fig. 1 Ground range).

Ground range is converted from slant range (Fig. 1 Slant range) within the beam width
of the physical antenna’s directional pattern. The beam width is perpendicular to the flight path
(Fig. 1 Radar beam) and determines the width of the viewing range along the ground range
coordinate. In practice, the wider the viewing range, the faster the radio image of a given surface
area is formed.

The size of the radio image pixel along the ground range coordinate is determined by the
radar's resolution along the slant range. At oblique range, the resolution determines how many
areas can be observed separately along the entire signal propagation path. Each area has
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a constant value at oblique range, but when converted to ground range, the sizes of the areas
change according to the formula
AR — ARSlant range (1)

Ground range Sin 9
where ARg. i ange — Tesolution of the radio system in terms of slant range, & — angle of

observation of each point on the surface, AR — resolution of the radio system in terms of

Ground range

ground range. The geometry of recalculating the areas of separate observation of objects on the
surface is shown in Fig. 2.
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Fig. 2. Geometric transformations of resolution at slant range into resolution at ground range

The resolution in ground range for all types of probing signals is inversely proportional to
their spectral width, therefore, along this coordinate, the main attention is paid to signal
processing in time and within a certain modulation period [2—4]. Resolution along the other
coordinate, azimuth, is determined by spatially-temporally coherent processing of complex
envelope reflected signals accumulated during motion [2-4].

Fig. 1, b shows the process of signal emission from point P1 and its reception at point P-.
The observation of the object (in Fig. 1, a Point target, in Fig. 1, b Target) occurs over a certain
period of time, while the directional pattern, having a certain width along the flight path
(in Fig. 1, a Squint angle), irradiates it.

The observation time at a fixed carrier speed or the interval of spatial accumulation of
reflected signals determines the size of the synthesized aperture. The azimuth resolution is
inversely proportional to the size of the synthesized aperture in the azimuth coordinate [2—-4].
The azimuth resolution in angular coordinates at a known height and elevation angle or at
a known slant range is converted into the resolution in spatial coordinates on the surface.

Thus, we have considered the geometry of measurements in SAR and determined the main
values that affect the resolution of radar images.




302

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Models of continuous signals in SAR

A probing signal with linear frequency modulation looks like this [5]:
$.(t) = exp{ j(27 ot + 7k 12 )} , )
where f, =c/A is the carrier frequency of the probing signal, c is the speed of radio wave
propagation, A is the wavelength, 7k t* is the quadratic phase shift inherent in the LFM signal,
Kk, = Af /tp the rate of frequency change by an amount Df over the modulation period t,.

In expression (2), a dot is placed above the probe signal designation, emphasizing that the
signal model is presented in complex form. This approach is a mathematical simplification of all
subsequent calculations. The physical signal emitted by the antenna cannot be complex and is
described by the harmonic signal model as follows:

5,(t) = Acos(27 fyt + 7k t*), (3)
where A is the amplitude of the harmonic oscillation. The following mathematical operations
can be performed on expression (3):
5,(t) = Acos( 27 fot + mk,t* ) =
0 (4)

= ARe{exp(Z;r f.t + 7k t )}
Assuming that the amplitude of the probing signal is equal to 1, in further calculations we
move on to complex signals, omitting the operator Re{-} and denoting s, (t) with a dot above.

The received signal reflected from the surface has the form [5]
s, (1) = exp| (271, (t- At) + 7k, (t-A0)° )}, (5)
where At = (Rl (n) +R, (n)) / ¢ — is the signal delay time during propagation, distances R, (n)

and R, (n) are shown in Fig. 1, b. The variable n in distances is referred to in the literature as

slow time, azimuth time, or azimuth coordinate of the radar image.
As a result of the carrier's movement, the received signal will have a Doppler frequency

shift, which changes the initial carrier frequency by an amount « = cz/(c2 —VSZ). Taking into
account the formula for range [1]:
R (n) = /RS +(Ven)’, (6)
we obtain the delay time
At=2a(R (n)/e+(V, fe) n). (7)
In (6), R, —the range to the surface point at an angle of 90 degrees to the flight path.

According to the classical theory of optimal signal processing [7, 8], received signals must
be processed in a matched filter or undergo correlation processing in a correlation integral.
In radars with continuous LFM signal processing, the impulse response of the matched filter
repeats the probing signal. Physical devices for implementing such processing include
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a linear receiver path with a set of filters (input circuits, high-frequency filter), mixer,
intermediate frequency filter, mixer for transfer to the zero-frequency region, low-frequency
filter, low-frequency amplifier [8-10]. At the output of the matched filter after
multiplication (5) and (2), we obtain

S (t) =8 (1) (1) =
= exp{ J (27[ ft+ 7k t° )} exp{—j (27[ fot =) +]} = (8)

+7k, (t-At)’

= exp| j(27 fyAt + 27k tAt - 7k AL )},

where ()* — complex conjugation sign.

The resulting expression (8) can be discretized and further processed by a computer.
This expression can also be used to test various algorithms for restoring radar images and
focusing radio systems. Let us consider these algorithms in more detail.

Algorithms for restoring radar images
in SAR with continuous LFM signal processing

Based on the analysis of the literature and formulas (1)—(8) presented, it can be stated that
the radar image is represented in the coordinates of "fast" time t along the ground range and
"slow" time n along the azimuth [1]. However, this representation is conditional, since in essence
it only shows that spatial-temporal signal processing is necessary to form a radar image.

In the literature, such processing of received signals is also called two-dimensional and,
in general, can be performed in four variations: 1) processing in time by ground range and
processing in time by azimuth, 2) processing in the spectrum by ground range and processing in
time by azimuth, 3) processing in time by ground range and processing in spectrum by azimuth,
4) spectral processing of signals by ground range and azimuth.

These four approaches and modifications of each of the time or spectrum processing
methods have led to the development of a large number of algorithms for forming radio
images based on the results of receiving so-called “raw” data in expression (8). Let us consider
the main ones.

Omega-K algorithm (wKA)
This algorithm accepts the assumption that At*> — 0 and phase shift 7k At*> does not carry
useful information [5, 11]. In this case, the expression for "raw" data will look like this:

$o(t.,n) =exp{ j (27 f,At + 27k tAL)} (9)
The first mathematical operation on (9) is the Fourier transform by coordinate t:

: Hh/2 | .

S(f,,n)= LO/zSO (t,n)-exp(—j2x ft)dt, (10)

where t, — observation time of received signals.
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Next, we determine the Fourier transform by azimuth

S(f,f )=J'ZS'(ft,n)-exp(—jZﬂfnn)dn. (11)

t? 'n

After calculating the Fourier transform in two coordinates, we obtain "raw" data for further
processing in the spectral plane:

S(f,. f,) =tesinc(zt, (f, —k.At))exp(jo(f,, f,)). (12)
_AraR,

where o(f,, f,)= - \/( f, + f, )2 —(Cfn/(ZonS))2 — frequencies by “fast" time coordinate

t, f,— frequencies by the "slow" time coordinaten.

The algorithm for processing "raw" data (12) according to the Omega-K algorithm
is shown in Fig. 3.

SAR raw signal
v

Two-dimensional FFT

v

Reference function
multiply

v
Stolt interpolation
v
IFFT in azimuth

v
SAR image

Fig. 3. Omega-K algorithm for processing "raw" data in SAR with continuous LFM signals
(taken from [5])

After converting the received signals into spectral form, the resulting expression (12)
is multiplied by the reference function

I_.|ref ( ftl fn) = exp(_j¢ref (ft’ fn ))’ (13)

¢ref ( ft’ fn) = 472'& Rref X

where (14)
aJ(fo+ 1) = (cf, /(2aV,))’ Je.
After multiplication, the phase will look like this:
Prem ( e, fn): 47[“(R0 — Ry )X
(15)

(o + 1) =(cf, /(2aV, )Y /c,.
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The next mathematical operation consists in interpolating data using the
Stolt method [12-14].

This interpolation is performed in connection with the "migration” of the range to
a separate point on the surface during the straight-line motion of the carrier.

The effect of range migration is shown in Fig. 4.

Range migration

Fig. 4. Range migration to a point target in SAR ([1])

The range migration effect also manifests itself in the spectrum of received signals and leads
to defocusing of radar images. The principle of data interpolation using the Stolt method
is demonstrated in Fig. 5.
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Fig. 5. Data interpolation using the Stolt method (taken from [15])

The essence of the presented interpolation is to replace the law of variation f, from linear to
nonlinear in such a way that the following equality occurs in expression (15):

Y+ £ = (cf, /(2aV,)) = f,+ 1, (16)

In other words, it is necessary to replace f, with a new variable f' to compensate for the

"migration” of the distance along the coordinate f,. Many works [1-10] are devoted to the issue
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of interpolation using the Stolt method, most of which conclude that the new variable should be

calculated as follows:
2 2
cf cf
frm J(f 4+ f) = ——| —f |[1- n . 17
' \/(0 Y (mvj 0\/ [Zavsfoj (7

The phase after interpolation will look like this

Prem (f0 1) = 47[05(Ro — Ry )( fo + ft’)/c‘ (18)

The last algorithmic operation consists in calculating the inverse Fourier transform by
azimuth. The result is a radar image of the surface formed by SAR with processing of continuous
LFM signals. It should be noted that when implementing the Omega-K algorithm in pulse SAR,
at the last stage it is necessary to calculate a two-dimensional Fourier transform in azimuth and
range. A feature of processing in SAR with continuous LFM signals is the availability of
information about the surface characteristics in each spectral component.

Modified Omega-K algorithm (wKA-M)
The block diagram of the ®KA-M algorithm [16] is shown in Fig. 6.

Ground-based FMCW SAR Data

v

Residual Video Phase Compensation

v

Azimuth Zero Padding

v

2-dimensional Support Domian Formulation

v

Reference Function Multiplication

!

Stolt Interpolation

v

2-dimensional Inverse Fourier Transform

!

Focused Complex Image

Fig. 6. Modified Omega-K algorithm for processing raw data in SAR with continuous LFM signals ([16])

Unlike the previous algorithm, instead of assuming that the phase component zk At® is

insignificant, in this algorithm, the first operation is to compensate for it by calculating the
forward Fourier transform in range, multiplying by the function

See (f.) =exp (=i (7 12/k ), (19)

and calculating the inverse Fourier transform in range.




307

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

The next operation in the block diagram in Fig. 6 is to supplement the "raw" data with zeros
along the azimuth coordinate. This method was developed for a ground station with aperture
synthesis moving on rails. The research in this work is devoted to the formation of radio images
from an aircraft, where data is constantly fed into the processor during movement and, in this case,
there is no need to supplement with zeros.

The main difference between the modified algorithm is the formation of two-dimensional data
at the stage that the authors [16] called 2-dimensional Support Domain Formulation. To explain the
essence of this operation, let us write down another representation of "raw" data

$o (t,X) = exp{j [27[ f %(X) + 27rkrti(x))} X

xexp{ j(47k, /c* )R (x)}

where x the analogue of "slow" time n, is just represented in more physical quantities — surface

(20)

coordinates, x =V At+X , X, =V,nT — discrete positions of the SAR carrier, n — discretization
period number, T, — modulation period of the probing LFM signal.
For further processing, a variable k.t = f,, frequency is introduced for the range coordinate,
and the range is written as follows
R(X) = R + (% —x)" . (21)

Substituting the expressions given in (20) and performing RVP compensation, we obtain the
result of the first stage of two-dimensional data formation

S(f.x,)=exp{j((4z/c)-(f,+ f,)x

(22)
><\/RO2 X, — % +V, f k)’ )}
The next step is to calculate the Fourier transform by azimuth.

S(f. % f) =] S(fox,)-exp{-j2rf,x }dx,, (23)
where f, — frequency by azimuth coordinate. The phase in expression (23) has the
following form:

O(f,x,, f,)=—(4x/c)-(f, + f,)x
. (24)

x\/Rj +(x=x, +V, f /k.) —27fx,.

Using the principle of the stationary phase
do(f,x, f,) 0o
dx, '
we obtain an expression for the azimuth coordinates

X, =- R/ + X, — Vel : (25)

JA(fo + 1, =12 K,
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Substituting (25) into (24), we obtain a two-dimensional representation of data in the
spectrum for further processing using already known algorithmic operations
47Z'R0 2 2¢2
. f,+f) +c°f°/4-
S(f,f)=exp{ ¢ \/( o+ ) o :
27 f,.x, +(22V, /K, )- f £,

(26)

Frequency Scaling Algorithm (FSA or CSA) and Range-Doppler algorithm (RDA)

Complete information on the implementation of the FSA algorithm is presented in [17-19],
and the block diagram is shown in Fig. 7, a. The RDA algorithm is described in detail
in [17, 20, 21] and demonstrated in Fig. 7, b. From the analysis of the main operations, it follows
that FSA is supplemented with new RDA operations.

In this case, let us consider in detail all the main operations using the frequency scaling
method. First of all, it should be noted that the "raw" data is represented as s(t,r) and fully

corresponds to expression (9), only instead of the variable for "slow" time n, # is used.

FSA RDA
Dechirped LEM-CW Signal Dechirped LEM-CW Signal
Sac(t,n) sa:(t,m)

1st Order Mo- G
tion Compen- H, (1. AT 1st Order Mo-
sation "‘ mcl( > mf) tion Compen- Hpet (r, ATref)

. sation
Azimuth FFT .
Range FFT

F Y
I.Sc:;:?:gcy .“ Hl (t!.f;:r) 2nd Order Mo-

tion Compen- .ZQ H,e2(To, ATo)
Range FFT
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O Half f) RCMC

Range IFFT Azimuth ’z‘ Holt, f))
az\bs Jn

Inverse Fre- Compression

Scaling (¢
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Azimuth IFFT
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Azimuth FFT
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Azimuth
zimut ’:‘ Hm( t frr )

Compression

Azimuth IFFT

Azimuth FFT

RVP Correction

Final Compressed Image

Final Compressed Image

a b

Fig. 7. Methods for processing "raw" data in SAR with continuous LFM signals: a — frequency scaling
method; b — Range-Doppler method (taken from [17])
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The first operation on the received signals is to compensate for the carrier's own motion,
which consists of multiplying the received signals by the function

H. (t,Arref ) = exp{—j (27z f AT, +

(27)
+2n K tAT, — 7K, (277Arref — 72 ))},

where Az =2AR /c, AR, =R

R R

— sloped range from the carrier to the

actual ~ ! ideal * ' “actual

point target, taking into account known deviations of the platform from the ideal trajectory;

R.... — the ideal trajectory of the platform for the same position of the point target.

ideal
The next stage of processing according to the FSA and RDA algorithms is the calculation of

the Fourier transform by azimuth and frequency scaling of data together with the elimination

of Doppler frequency shift, which consists in multiplying the preliminary result by the function

H, (t. f,) =

= exp{—j[zﬁ f t+zk,t? (1— D( f,.V, ))}} (28)

where D( f, ,VS) = \/1— A? fn2 / (4V52) — coefficient determining the degree of range migration.

After frequency scaling, a Fourier transform is performed in the range and in the frequency
domain, and the constant phase with a quadratic ramp is compensated for in the range, as was
done in the ®KA-M algorithm.

Compensation for the excess phase is performed by multiplying the data by the function

H, (., f,]):exp{—j(fsz/(krD(fﬂ,Vs)))}. (29)

After performing the inverse Fourier transform in range, inverse frequency scaling is
performed by multiplying by the function

H, (L, f,) =
= exp{~jzk t*[ D*(1,V,) - D(f,V, ) ]}-

At this stage, secondary range correction and phase shift compensation for range are also
introduced, as described in detail in [18].

Next, the signal is sequentially transformed into the spectral plane by range, and an inverse
Fourier transform is applied by azimuth. In the resulting two-dimensional signal, range migration
is secondarily compensated by multiplying the data by the function

H. (70,A7,) = exp{—j (27 fyATy +
+27K 1,At, — nk At +2m f AT, —. (31)
+7Z’krAZ'2 )},

ref

(30)

2zk 7 AT

r “ref ref

where 7, = 2R, /c, A1, =2AR,/c, 7, =2R [c, At =2AR ; /c.

ref

The following operations are known from previous methods: calculation of Fourier
transform by azimuth, data compression by azimuth, calculation of inverse Fourier
transform by azimuth.
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The difference between these operations lies only in their names; their essence remains the
same. Azimuth data compression is the same operation as multiplication by a reference function
in the oKA and ®KA-M algorithms.

Modified frequency scaling method (FSA-M)
This algorithm is an extension of the FSA algorithm [22, 23], which is shown in Fig. 8

5(21) 5(6T)

®<~ Hea [.'.Arw) le(.f.b‘fru,)
Aamuth Anmuth
FFT FFT

@v H(r.1.) H(1.f)
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Hsac‘ ["-f: )'Hss (.Ff )
Range FFT Range FFT
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Azimuth Azimuth
IFFT [FFT
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Azimuth Azimuth
IFFT IFFT
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Final image Final image
a b

Fig. 8. Methods for processing "raw" data in SAR with continuous LFM signals: a — frequency scaling
method; b — modified frequency scaling method

If we disregard the forward and inverse Fourier transforms in range and azimuth and the
carrier motion compensation operations, the key differences between the algorithms
are as follows.

The frequency scaling function in the modified algorithm takes the form, instead of (28),
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H (t.f,)= exp{—jﬂkrtz (1-D(f,.v, ))} . (32)
In the modified algorithm, after the inverse Fourier transform, the data is multiplied by three

more functions that perform:
1) Doppler shift correction

Hoe (. f,) =exp{-j2zf,D(f,.V,)t}, (33)

2) second-order range compression
.2nR y
Heee (1. f,) = exp ¢’ D°(f,.V,) Lk

%(D(f,.V, )t—2R, Je)

k2a D*(f,.V,)-1

ref r

27R,k2° D*(f,V,)-1
X

xexp ¢’ D*(f,.V,) |, (34)
<(D(f,.V, )t—2Ry Jc)
3) group phase shift compensation
Hes (t.f,) =
g, [—1 —1] x| (35)
= exp c D(f,.V;)

x(D(f,.V,)t-2R /c)

At the final stage, when compressing data by azimuth, multiplication by the phase
preservation function is additionally introduced.

Hoe (1,1 )=expl jorme T,
PPC( r n)—exp J c D(f V) : (36)

n'’s

The presented modified algorithm is similar to the existing FSA, but has the advantage of
taking into account the compensation of carrier motion during emission in signal processing.

The classic FSA was borrowed from the algorithms of pulse SAR, where the emission time
is significantly less than the observation time of the reflected signals. In SAR with continuous
LFM signal processing, the radiation time is significant and the carrier motion must be taken into
account in this case.

Conclusions

The article considers a generalized approach to constructing spatial models that describe the
process of measuring the coordinates of radio emission sources. Geometric schemes are
proposed that allow formalizing the mutual location of the source and receiver in three-
dimensional space. Functional dependencies between measurement parameters and scene
configuration are established. It is shown that geometric factors significantly affect the accuracy
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of coordinate determination. Particular attention is paid to multiple observation options that
reduce ambiguity and increase the reliability of results. The analysis confirms the feasibility of
using three-dimensional models in direction finding and navigation tasks. The results obtained
can serve as a basis for the development of new signal processing algorithms in radio
measurement systems.

The proposed approach opens up opportunities for improving sensor placement and
trajectory planning. The research has both theoretical and practical significance. Further work
may be directed toward the practical implementation of simulation models and testing their
effectiveness in real-world conditions.
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KoBanbuyk [Januin IBanoBuu — PhD, [lepxkaBHHMI HAayKOBO-JOCTIMHHN IHCTUTYT TEXHOJIOTIH
KibepOesneku Ta 3axXucTy iH(popmaii, TpoBiTHUI iHXEHEp HAyKOBO-AOCHiAHOTO eHTpy, KuiB, Ykpaina.

Kuna Oabpra BosommmupiBHa — KaHmumar Gi3MKO-MaTeMaTHIHUX HaykK, XapKiBCHKHUI
HalllOHAJILHUN YHIBEPCUTET paioeNeKTPOHIKH, TOUEHT KadeIpH BUIIOT MaTeMaTHKH, XapKiB, YKpaiHa.

I'EOMETPISI BUMIPIOBAHDb, MOAEJII CUT'HAJIIB I
AJITOPUTMMU BITHOBJIEHHSA PAJJIO30BPAKEHD
B PAJAPAX I3 CUHTE30OBAHOIO AIIEPTYPOIO,
IO BUKOPUCTOBYIOTbH BE3IIEPEPBHI JIUYUM-CUI'HAJIN

VYV crarTi npoaHanizoBaHO MeTOnHW (HDOPMYBaHHS PadiofOKAIlifHIX 300pakeHb MOBEPXHI, IO OTPHUMaHi
3a JIOTIOMOTOI0 pagapa 13 cuHTe30BaHolo amepryporo (PCA) 3 OesmepepBHHM 30HAYBAJILHUM
JIYM-curranom. CTaHOBUTE iHTEpPEC BU3HAYCHHS OCHOBHUX AJTOPUTMIYHHUX OTEPAIliid, IO BUKOHYIOTHCS
Hax "cupuMHu" TAaHUMU TICIs iX peecTpalii B mpuiiMadax. ¥ poOoTi po3MISHYTO F€OMETPil0 BUMIPIOBaHb,
30HIYBaJbHUH CcUrHaJM 1 ocobmuBocTi ¢opMmyBaHHS "cupux" NaHMX, IO BU3HAYaTUMYTh IOAAJIbLIE
00po6neHHs. [l MOpIiBHSAHHSA SKOCTI pOOOTH Pi3HUX aJTOPUTMIB 3allPOIIOHOBAHO IMITAIlifHy MOIEINb
¢dopmyBaHHsl pagionokaniiHux 300paxeHs B PCA 3 o0poOnenusim OesnepepBHux JIUM-curnanis.
MeTa aocjaiIKeHHs1 — CTBOPHTH YHIBEpCalbHy TI'€OMETPUYHY OCHOBY Uil HOOYHOBH €()EKTUBHHX
BUMIDIOBAIBHUX CXEM 1 ajroputMiB OOpOOJCHHS CHUTHANIB Y PaiOTEXHIYHHX CHCTEMax.
3apaanns po6orm mnependadarots: 1) dopmamizamiro 3agadi BU3HAUSHHS KOOPAMHAT 3a Pe3ybTaTaMu
TIEJIEHTAI[IfHAX BUMIPIOBaHb; 2) MOOYOBY MareMaTW4YHOi MOJENi B3a€MHOTO pPO3TAIIyBaHHS 00 €KTIB Y
TPUBUMIPHOMY MpPOCTOpi; 3) BU3HAYEHHS BIUIMBY I'€OMETPHUYHMX (AKTOPIB HA TOYHICTH BHMipIOBaHHS;
4) aHayi3 BapiaHTIB OHOPAa30BOTO # 0aratopa3oBOro CrocTepexeHHs. {OCArHYTi pe3yJibTaTH JaroTh
3MOT'Y BCTAHOBUTHU aHAJITUYHHUN 3B’S30K MiX ITapaMeTpaMi BHUMipIOBaHHS Ta KOH]Irypali€e mpocTopoBoi
CLIeHH, 110 3a0e3nedye MiBUIIEHHS TOYHOCTI KOOPAMHATHOTO BU3HAYeHHs. [lepcneKTHBH 3aCTOCYBAHHS
pe3yipTaTH MOXYTh OYyTH BHKOPHMCTaHI UL MIABUIICHHS ¢(EKTHBHOCTI HABITAIlifHUX, PO3BiAyBaIbHHX i
MOHITOPHHTOBHX CHCTEM, & TAKOXK y 3a]auax CyMpoOBOLY PyXOMHUX 00 €KTiB 1 MOOYAOBH CHCTEM CHTYaliiHOT
00i3HaHOCTI.

KnarwuoBi cjoBa: reomerpiss BUMipIOBaHb; IEJEHTallisl; KOOpAWHATHE BH3HAUEHHS; TPUBUMIpHA
MOJIeTIb; PaliOBUMipIOBaJIbHA CHCTEMA.
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