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Subject of the study. The study focuses on preventive software maintenance processes, particularly the
formalization of mechanisms for monitoring, degradation-risk identification, and proactive decision-making within
the software life cycle. The purpose of the research is to develop a reference model for preventive maintenance that
enables systematic detection of deviations from reference operating modes, assessment of their temporal dynamics,
and generation of well-grounded preventive actions prior to the emergence of failures. Research tasks. The tasks
include: establishing a classification of metrics and features for characterizing software states; constructing a formal
apparatus for preventive identification using an extended comparator identification method; defining the structural
components of the model; and developing models for monitoring, risk analysis, maintenance-task derivation, and
adaptive parameter adjustment. Research methods. The methodological basis comprises the extended comparator
identification method, which provides comparative evaluation of current software states relative to reference modes
and quantifies deviation trajectories. Feature aggregation, normalization, formal description of the functional state
space, trend analysis in temporal windows, and adaptive feedback mechanisms are applied. Results achieved.
A five-component reference model is developed, incorporating modules for state monitoring, preventive
identification, task generation, action-effect evaluation, and adaptive tuning. The model supports early detection
of latent degradation through analysis of deviation trajectories, integrates with CI/CD, DevOps and MLOps
pipelines, and establishes a formalized decision-support mechanism for proactive maintenance. Conclusions.
The proposed model constitutes a comprehensive formal framework for preventive software maintenance, aimed at
early detection of potential failures and long-term system stability. Its adaptive nature ensures relevance under
dynamic operational conditions, while comparator identification enhances interpretability and validity
of maintenance decisions. The results provide a foundation for intelligent maintenance systems and future research
on automated formation of reference states and ML-enhanced risk assessment.

Keywords: preventive maintenance; comparator identification; monitoring; technical debt; degradation
prediction; software quality; DevOps; MLOps.

Introduction

Software (SW) requires continuous maintenance throughout its entire life cycle. The support
and maintenance phase is the longest and most resource-intensive: according to estimates, it can
account for up to 80-90 % of the total cost of a software product's life cycle [1]. Maintenance
covers various activities, from defect correction (corrective maintenance) and adaptation to
environmental changes (adaptive maintenance) to functionality expansion (perfective
maintenance). Preventive maintenance is a separate category — proactive actions aimed at
anticipating potential problems before they arise. According to the international standard
ISO/IEC/IEEE 14764:2022 [2], preventive maintenance is defined as "modification of a software
product after its delivery, aimed at correcting hidden defects before they manifest themselves in
the operating system" [2]. This proactive approach is especially important for critical software
systems that have high requirements for security and availability (e.g., medical systems) [3].
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The relevance of developing preventive maintenance is driven by the need to improve the
reliability and quality of software products amid their growing complexity and the multitude
of factors affecting the effectiveness of maintenance [4]. In traditional practice, support is often
provided reactively, i.e., only after failures or user complaints have occurred. Neglecting
proactive measures leads to the accumulation of technical debt and increased long-term support
costs [5, 6]. Preventive actions, on the other hand, make it possible to avoid costly emergency
interventions in the future. As noted in [1], the cost of emergency fixes usually exceeds the
resources required to prevent them. Therefore, the transition from responding to problems to
proactively preventing them is a promising direction for the development of software
engineering, designed to ensure high reliability and cost-effectiveness of software maintenance.

At the global level, it is emphasized that preventive SW maintenance should be carried out
in a planned and systematic manner. To implement this approach within the life cycle, it is
advisable to apply the reference model for preventive support (RMPS) — a specialized framework
that integrates into the process of software development and operation. The reference model
provides for continuous monitoring of the state of the software system and its components,
evaluation of the metrics and indicators obtained, and adaptation of the support system based on
this data. Based on established criteria, the model generates recommendations for preventive
actions: it determines what needs to be improved or corrected and when it should be forwarded
to the development team for implementation. This ensures that the necessary maintenance work
is performed in a timely manner before potential problems turn into actual failures or incidents
for users. The proposed preventive maintenance framework serves as a decision-making support
tool for project management, allowing you to proactively manage the evolution of the software
product and maintain its high quality.

Analysis of current publications on the issue of preventive maintenance

Currently, preventive maintenance is not yet widespread in the typical software development
cycle. Many organizations still focus primarily on responding to already identified defects and
user requests, while systematic prevention of potential problems is implemented in a fragmented
manner. At the same time, scientific literature and standards note the significant potential of the
preventive approach. Methods for predicting defects and "fatigue™ in software code are being
developed using data analysis and machine learning, and code "smells" and ways to reduce
technical debt are being investigated. The prospects for implementing software maintenance
models are linked to increasing the reliability and security of software products, reducing
downtime and the number of critical failures, and optimizing support costs through the timely
implementation of necessary updates.

International standards for the life cycle and quality of software systematically describe
maintenance [2, 7]. The ISO/IEC/IEEE 14764 standard [2] defines four types of maintenance:
corrective, adaptive, perfective, and preventive. Preventive maintenance is aimed at improving
reliability, security, and facilitating further development and support of the system.
The ISO/IEC/IEEE 14764 [2] standard defines maintenance as an integral part of the software
life cycle and describes processes that can be applied to different classes of software products.
ISO/IEC 25010 [7] sets out a model of SW quality and identifies eight characteristics, including
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reliability, security, and maintainability. Preventive maintenance directly enhances these
characteristics: it increases reliability by eliminating latent defects, improves maintainability
(refactoring, updating documentation, test base), and strengthens security by promptly fixing
vulnerabilities and keeping dependencies up to date. Thus, according to international standards,
preventive maintenance is a formalized, planned activity that must be performed throughout the
entire life cycle of a software product.

Despite the official recognition of its importance in the relevant standards, preventive
maintenance receives significantly less attention in scientific literature compared to other forms
of SW maintenance. An analysis of the literature over the past five years shows that preventive
maintenance remains an under-researched area. For example, in a systematic review [6],
only 7 of the 111 papers considered mentioned the benefits associated with preventive
maintenance. Synthesis reviews (in particular [1]) emphasize that although support can account
for up to 70-90 % of the SW life cycle, preventive actions remain secondary compared to defect
correction or new feature implementation. A reactive support approach prevails over proactive
intervention. This creates an obvious gap between the theoretical significance of preventive
maintenance and its practical implementation.

Despite the general lack of research on the topic, some publications offer tools, models, or
metrics directly related to preventive maintenance. Works [8-10] explored the possibility
of predicting code changes (change-proneness) using software product metrics, commit history,
and other factors. A vector of features is formed for each module from the history of changes:
product metrics (complexity, size, "smells™), process metrics (code churn, edit frequency, defect
commit density, age of last refactoring), social metrics (expertise and "ownership™ of the module,
number of authors, review duration). These features are used to train models that return the
probability that a component will need to be changed or will produce a defect in the near
future [8-10]. Empirical studies show the effectiveness of this approach for ranking risky
components and planning preventive actions. Such predictive models allow identifying
"vulnerable™ areas of code for targeted refactoring or additional testing, which directly
corresponds to the tasks of preventive support. Study [11] examines the use of machine learning
algorithms to identify classes in which the presence or absence of "code smells" correlates
with the probability of defects occurring. The results confirmed that removing such symptoms
before real errors occur is an effective preventive approach. A number of studies
(in particular [5, 12, 13]) substantiate the idea of systematic detection, registration,
and repayment of technical debt through planned refactoring, library updates, etc.

Mobile applications create additional challenges for preventive support: frequent operating
system updates, device diversity, high sensitivity to productivity and resources, the need for
regular updates of dependencies and compliance with app store requirements. Works [14-16]
emphasize the need for systematic planning of preventive releases, testing on OS beta versions,
and monitoring user feedback as a source of signals for proactive improvements.
Some authors suggest creating a maintenance calendar that takes into account the platform
update cycle and user expectations [14].

Research on modern CI/CD and DevOps processes demonstrates the growing role of
automated quality control tools that can signal the need for preventive intervention.
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The maintenance of software systems with machine learning components is of particular
scientific interest. In the context of ML systems, there is a similar increase in attention
to monitoring data and model drift as triggers for proactive updates [3, 14, 15]. The first
systematic review of the challenges of maintaining ML systems was published only in 2022 [16],
which indicates the novelty and insufficient study of the topic. The main challenges are related
to model degradation, the complexity of reproducing results, the lack of modularity, and the
accumulation of technical debt in the form of uncleaned pipelines and unstructured data [17].
The authors [15] recommend the introduction of MLOps practices: versioning of models and
data, continuous monitoring of model productivity, automated retraining, etc. Preventive
maintenance in this context involves not only code maintenance, but also the quality and
relevance of models, which quickly lose their effectiveness without proper support.

The analysis showed that preventive maintenance is recognized as an important but still
under-researched topic in the scientific community. EXisting approaches demonstrate the
practical value of preventive actions but require further development, standardization,
and validation. Thus, further study, formalization, and implementation of preventive
maintenance models is a relevant and strategically expedient direction for software engineering.

Research objectives and tasks

The aim of this study is to improve the effectiveness of software maintenance by developing
a reference model for preventive maintenance that provides early detection of degradation trends,
formalized identification of risk states, and timely generation of preventive actions within the
software system lifecycle.

The study has formed a comprehensive structure of a reference model of preventive
maintenance, which includes components of monitoring, preventive identification, task
definition, result evaluation, and adaptation. Mathematical models of the interaction of these
components and mechanisms for linking them into a single cycle of proactive maintenance have
also been determined. The practical applicability of the proposed model is separately
substantiated, which creates the prerequisites for improving the reliability, security,
and maintainability of software systems in dynamic operating conditions.

Materials and methods

The methodological basis for preventive software maintenance requires a clear
understanding of the indicators that best reflect the potential risks of system degradation, as well
as the mechanisms for interpreting them in order to make timely engineering decisions. This task
is also complicated by the high dynamics of environmental changes (OS updates, device
diversity, use of third-party service APIs), as well as pressure from user expectations for
stability, performance, and data security. Preventive maintenance in such an environment should
be based not only on fixing current defects, but also on analyzing changes in the behavioral,
technical, and qualitative characteristics of the software system over time, as well as pressure
from user expectations for stability, performance, and data security [4].

Preventive maintenance covers key groups of metrics that signal the need for intervention
even before noticeable failures in SW operation occur. This study proposes the use of the
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comparator identification method [18-20], which allows early signs of degradation to be
detected through comparative analysis of metrics over controlled periods. This method is at the
core of the analytical mechanism of the preventive maintenance framework, ensuring
the systematization of risk signals, the formulation of decisions for the development team,
and their integration into the existing SW life cycle.

Within the scope of this work, metrics are grouped into four complementary classes:
1) code and architectural metrics; 2) maintainability and technical debt metrics; 3) process
evolution metrics (changes and defects); 4) field (operational) and security metrics.
This classification is consistent with quality standards approaches [7], where maintainability,
reliability, and security are considered key characteristics that must be maintained throughout
the life cycle.

Code and architectural metrics assess structural complexity and design features that directly
affect the risk of defects and the cost of changes. A classic measure is McCabe's structural
complexity, which reflects the number of linearly independent paths in a flow control graph [10]:

CC=E-N+2P

where E is the number of edges, N is the number of nodes, P is the number of connectivity

components (mostly P =1) [16]. High values CC correlate with complicated verification and
increased defectiveness. Typical thresholds that are appropriate to use can be defined as follows:
1-10 (low risk), 11-20 (medium), 21-50 (high), >50 (very high).

Additional indicators, such as Coupling Between Objects (CBO), Response for a Class
(RFC), and Lack of Cohesion of Methods (LCOM), provide insight into the modularity,
encapsulation, and "fragility” of the design [10, 11]. Low cohesion and excessive coupling are
early signals for preventive refactoring. Practical collection of such metrics can be performed by
static analyzers (e.g., SonarQube), which also identify "code smells”, i.e., informal design
symptoms (long methods, "divine classes”, duplication) that are empirically associated
with defectiveness and reduced maintainability. Eliminating such defects is a typical
preventive measure [11].

Maintainability and technical debt metrics aggregate assessments from different complexity
measurements into a single indicator that is convenient to observe over time [6, 11, 12].
A common example of this type of metric is the Maintainability Index (MI), a convenient
integral indicator that combines Halstead Volume (information complexity), Cyclomatic
Complexity (structural complexity), and LOC (code size) and provides a quick assessment
of maintainability [11]. The following formula for determining MI is considered
the most well-known:

100

MI = max(0,171-5,2In HV —0,23xCC -16,2In LOC)><ﬁ
where Ml is normalized in the range [0,100]. Gradations may differ between instruments,

but often MI <49 jndicates the presence of problems and the need for code refactoring.
The metric works well as a trend indicator: if it falls from release to release, this is a clear signal
for preventive action (refactoring, simplification, decomposition).
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Process evolution metrics reflect how the system changes and is released (activity in the
repository, commit patterns, defect and support history), which is a source of early signals.

Such indicators include Code Churn, as well as the frequency of changes to individual
modules, the density of "hot" commits, the ratio of defect and feature changes, etc. Churn is
a key process metric that shows how often and how much a module changes over time.
It naturally fits into the preventive loop as an indicator of fragility: increased churn correlates
with a higher risk of defects, regressions, and subsequent maintenance costs, so it serves as
a signal for proactive interventions (refactoring, additional tests, stabilization sprints) [9].

The relative intensity of code changes is calculated as follows:

LOC e + LOC agiies + LOCeites

LOC

At the operational level, classic reliability metrics such as MTTF/MTBF (mean time
between failures) and MTTR (mean time to repair) record the consequences of identified
problems, and trends in these metrics show that preventive practices are working [19].

Field (or operational) and security metrics measure the "health” of the system in real-world
use and its resistance to vulnerabilities. The former include the proportion of error-free sessions
relative to the number of users, latency and throughput of critical transactions, stability
of resource usage (CPU/memory), productivity degradation indicators under load, etc.
They are collected by APM (Application Performance Monitoring) and observability tools
(Sentry, Grafana) and form the basis for early detection of deterioration trends [3, 19].

The security dimension includes the number and severity of known vulnerabilities in
dependencies on the CVSS (Common Vulnerability Scoring System) scale, the "age™ of unpatched
CVEs (Common Vulnerabilities and Exposures), and the proportion of components outside the
support window, which makes it possible to prevent degradation and exploitation [15].

From a preventive perspective, it is important not only to track individual indicators,
but also to interpret their dynamics and combinations. An increase in cyclomatic complexity,
along with an increase in churn and a decrease in MI, supported by "code smells”, makes
a compelling case for targeted refactoring before field incidents occur.

Similarly, spikes in latency and deterioration in reliability metrics, combined with
an increase in defective commits, are grounds for preventive fixes and expanded test coverage.
In practice, metric collection is integrated into CI/CD as "quality gates”, and their trend analysis
directly feeds into the backlog of preventive tasks.

It is assumed that the results of observations can be characterized by an assessment of the
system's state. Based on the software system's operating data, a system of features for each
scenario and a set of output characteristics are formed, which can be used to compare different
behavioral scenarios. In general, the input data can be of any type, and the model output is
accepted as binary (0 or 1) — in fact, the model implements a certain predicate that checks the
condition for the fulfillment of relations between input signals [19].

Such formalization through predicate logic ensures strict fulfililment of the specified
conditions for all cases, making the method objective and rigorous. If necessary, the method is

ChurnRate =

total
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extended to fuzzy data: instead of a rigid true/false, degrees of membership are allowed, which
makes it possible to take into account the uncertainty of the output information [20].

Thanks to this, comparator identification has been applied not only to technical systems,
but also to complex, weakly formalized objects — from the assessment of professional skills to
the modeling of cognitive processes [18-20].

From a mathematical point of view, the comparator identification method has a rigorous
theoretical basis. It provides an objective, highly accurate, and reliable description of the object
model, which is not inferior in completeness to classical direct identification [19]. If the input
and output relations are specified correctly, the solution to the comparator identification problem
provides a model that is fully consistent with all observed facts (up to isomorphism in the model
state space).

This means that within the limits of its formulation, the method is correct and capable
of providing a complete mathematical description of the desired dependence. Moreover, its use
formalizes subjective expert data: instead of intuitive "vague" features, a clearly defined function
or rule is used for decision making.

Thus, based on the collection and analysis of features of software system operation
scenarios, a system of input signals for a preventive maintenance model is formed. The use
of the comparator identification method allows us to build strict and reasonable
interdependencies between the received signals and the risks of system degradation through
indirect identification. Based on the conclusions, SW maintenance tasks are formed.

Therefore, to implement continuous preventive SW maintenance, it is necessary to develop
a framework (reference model) that will formalize the main components of the maintenance
model and serve as a foundation for developing models for monitoring, identifying degradation
risks, and defining maintenance tasks.

Results

The basis of the proposed preventive support model is the basic structure of software (SW)
support, which includes four basic elements that correspond to the generally accepted cycle
of proactive reliability assurance: monitoring, status assessment, action determination,
and evaluation of the results of the actions taken.

This study proposes to extend the classical approach by adding a model tuning component
that will ensure the adaptation of rules in a continuous cycle of observation and improvement
of the software system for the purpose of preventive maintenance. Together, these components
form a cyclical process of preventive support, similar to a monitoring and adaptation loop.
It includes observation, analysis, action plan, and verification — all the elements necessary
for continuous improvement of SW quality and reliability.

This approach fits in with the current trend of transition from passive support to active,
intelligent support of software systems.
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Components of the reference model of preventive support

The proposed reference model of preventive support thus consists of five main
components: monitoring of status and usage scenarios, identification of degradation
risks, determination of actions and formation of support tasks, evaluation of the results
of actions, and adaptation (Fig. 1).

Monitoring

-collectDatal)
-extractFeatures()
-normalize()

I

feature values
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Fig. 1. Structure of the reference model for preventive SW maintenance

The monitoring process model is designed for continuous collection and tracking of metrics
on the status of the application itself and the external conditions of its operation. For a mobile
application with external sensors, such metrics may include, for example, application response
delays, error or failure rates, abnormal sensor readings, the degree of deviation of input
data from the training sample, device load indicators (CPU, memory, battery), etc.
Regular monitoring allows you to accumulate historical data and record deviations in system
behavior in real time.

The problem condition identification process model (preventive assessment) analyzes the
collected data (using rules, statistics, or machine learning algorithms) to identify patterns and
conditions that precede the occurrence of problem situations. In other words, the system attempts
to predict potential failures or degradation based on detected anomalies, such as increased
response time, memory leaks, sensor data distribution shifts, or decreased ML model prediction
reliability. Such predictive analytics in SW is analogous to predictive maintenance in industry,
where equipment failures are predicted based on data. Recent studies confirm the effectiveness
of moving from purely reactive error correction to proactive prediction and prevention of failures
using data analysis and Al methods.
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The task identification process model is responsible for determining the actions that the
development team needs to take. After identifying risky conditions, the system must determine
what preventive measures or tasks should be performed to reduce the risk of a problem.
In the context of agile development, this means forming specific tasks for the team (for example,
including a fix for a potential memory leak in the next sprint, updating a machine learning
model, improving sensor data processing, or adding monitoring of a specific parameter).
In essence, this component carries out impact planning: based on the identified problem,
the optimal actions are selected. In modern DevOps/AIOps practice, such decisions can be made
automatically in the form of alerts to developers or even automatic remediation (e.g., service
restart, model rollback). However, the automated conversion of analytical conclusions into
development tasks is still in its infancy and often requires human involvement. Nevertheless,
a formalized task model is important so that preventive measures do not remain at the level
of signals but are implemented.

The process model for evaluating the results of actions is a feedback mechanism that
assesses the effectiveness of the preventive measures taken. After completing the tasks
(for example, releasing an update or reconfiguring the model), it is necessary to monitor the
system again and compare the metrics before and after the intervention. This allows you to
understand whether the probability of the predicted problem has decreased or whether the
bottleneck has been corrected. In addition, such an analysis of results replenishes the knowledge
base: it confirms or refutes the correctness of the identified conditions and the effectiveness
of the measures. As a result, the results assessment model closes the classic cycle: successful
cases strengthen confidence in the support system, and in case of failure, the monitoring metrics
or identification rules are adjusted.

The adaptation process model is the final element of the preventive software maintenance
cycle, which ensures its ability to self-improve based on feedback. Its purpose is to periodically
review, refine, and update the rules, thresholds, machine learning models, and procedures used
by the monitoring, preventive assessment, and task formation blocks. In particular,
if a discrepancy is found between the predicted risks and the actual results of interventions,
the adaptation module compares the expected and actual dynamics of metrics, assesses the
degree of deviation, and determines which model parameters need to be updated. This allows for
automatic adjustment of both the sensitivity of anomaly detection algorithms and the relevance
of rules that initiate preventive actions.

The presence of an adaptive component is critical because the operating conditions of the
mobile application, the nature of data from external sensors, and user behavior change over time,
leading to the gradual degradation of static models. Thus, the adaptation block is a mechanism
for "self-calibration" of the system: it closes the cycle, ensuring continuous improvement
of preventive procedures and increasing the stability and reliability of the software in dynamic
operating conditions.

Thus, the proposed five-component model forms a complete closed cycle of preventive
support from monitoring and risk assessment to the formation of actions, evaluation of their
effectiveness, and adaptive refinement of rules. This architecture ensures the software's ability to
proactively self-improve, increasing its reliability in dynamic operating conditions.
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Formalization of the set of software system states

Let x e R" is a is a vector of state characteristics of a software system running on a mobile
device. Each component of the vector x describes a specific aspect of the system's operation, in
particular, related to sensor data processing, machine learning model operation, user activity,
network connection quality, device parameters, and inter-user interaction, etc. Let us denote the

state of the software system at a given moment in time t as x,. Thus, each vector x, e R" fully

characterizes the functional state of the software system over time. The vectors collected at
different points in time form a set of observable states.

Let X < R" —the space of all possible vectors x, describing the software system over time.

The set X is the basis for further analysis, including clustering of states, anomaly detection,
formation of classes of equivalent operating modes, and construction of a system of preventive
signals. Let us define the set of possible (attainable) functional states of the system as:

X ={x eX|x eQ},
where Q ¢ R — permissible interval or scale of values of the corresponding feature.
Therefore, vectors x, are elements of observation streams:

D={x ex[teT},
where T is a set of discrete observation points in time.
However, vectors x, can be unstable, noisy, or interdependent. Therefore, for effective
analysis of the SW state, we introduce a reflection:
$: X2 7,
where Z < R™ is a set of established (aggregated, normalized, discretized) features suitable for

comparison, class construction, and use in the comparator identification method.
Let W be the size of the observation window (the number of steps back in time). Then, from

the set of observations X" :{XTEXQ,Te[t—W +1,t]}, i.e., from the time windows

of observations, the aggregated features z, are formed as:

4 = (P({Xr}\;v:l)’

where ¢ — aggregation or transformation function: average, maximum, trend, autocorrelation,
derivative, etc.

In general:

Z, :cI)(X:N ),zt eR",
where @ : R"Y" — R™ — feature construction function.

These aggregated features z,, teT are the basis for normalizing and comparing SW
operating modes, constructing equivalence relations (in the comparator identification method),
and determining functional classes. The set of all such vectors forms a space:

Z={z]teT}.
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Let us call those feature vectors z* e Z that correspond to the normal (stable or functionally
acceptable) mode of operation of the software system reference vectors. Let us denote the set
of reference states as:

Zy ={z eZ|i=1...r},

where r —number of known or recorded reference implementations.
Let us define the functional equivalence relation ~ on the set Z if for two states z,,z, e Z:

2~ 2, p(2,2,)<6,
where p(Zl, zz) — selected similarity metric (e.g., Euclidean, Mahalanobis), & > 0 — acceptable

deviation threshold.
Thus, each element z e Z either belongs to the class of one of the standards z;, or initiates

a new class.

The key idea of the proposed approach to preventive SW maintenance is not to attempt to
identify numerical parameter values, but to determine classes of equivalent functional states
based on comparisons with benchmarks. State identification is then carried out according to the
following scheme:

Step 1. Calculate the distances d. = p(zt,zi*),i =1...,r.

Step 2. If there is such i that d, <&, then z ~z and z, belongs to class i. Otherwise,

the state of the software system at time t must be marked as abnormal or unknown.

This approach has certain limitations, i.e., the method is applicable when the system allows
for the selection of representative reference implementations, features are aggregated, filtered
from noise, and normalized, and a metric is available that preserves functional similarity
rather than just geometric proximity.

The comparator identification method [18, 20] allows not only to record "failures”, but also
to classify states according to their functional proximity to known normal modes based on
known feature values or to identify states with potential functional shifts (when the
definedfeature vector does not match any reference).

Thus, this allows for preventive diagnostics without the need for explicit failures
or "normal/abnormal™ labels.

The complexity of preventive diagnostics lies in the fact that the state of the software system
can be classified as normal based on formal characteristics, but the risk of degradation may
increase. To eliminate uncertainty, it is proposed to extend the comparator identification method
by identifying trends of deviation from reference states.

To do this, at each moment in time t, the SW state z, is not only compared with the

reference points, but also analyzed in terms of the dynamics of its approach or departure
from the reference space Z . during the time interval [t—W +1,t].

ref

For each moment in time t, the distance to the nearest reference point:
d =min p(z,7), z €Z, .
1
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Then the trajectory of distances over the time window W :
DtW = {dt—W+l’dt—W+2’---,dt} .

This sequence reflects whether the system is approaching or moving away from the
reference value.
To assess the trend or deviation trend, you can use the gradient assessment.

At _ dt _dt—W 1
W
or sliding average change
_ 1 W
t = Vﬁ £ (dt—i+l - dt—i ) .

Thus, the identification of the SW state occurs according to the specified values
of the aggregated features z,, the distance to the nearest reference state d,, and the assessment

of the deviation trend from the reference states A,. If the permissible threshold for deviation

growth is exceeded or a trend toward deviation growth is identified, the preventive monitoring
system generates a signal indicating an increased risk of software system degradation.

Thus, comparative identification is used to determine the trajectory of deviation from a set
of benchmarks. The key object is not the SW state z,, but the sequence of deviations from a set

of reference states D;. This model allows predictive signals to be issued regarding the growth
of degradation risks and forms the basis for developing an action plan.

Formalization of a reference model for preventive software maintenance

In accordance with the above structure of the reference model for preventive SW
maintenance, let us consider the following basic models that form the basis of the framework.

1. SW state monitoring provides data collection on SW functioning, reflecting the state
of the application and the external environment, forming a stream of observations

D, ={X1Xz:---. X, | - TO do this, you need to specify a set of data sources K that form the raw
data stream s, :{sfk),an}, the interval (frequency) of data collection 7, the operator for

extracting SW state characteristics ¥(s,), and the function CD(XtW ) for constructing features

znZ . That is,
M, :Kz7,¥02Z.

The basic monitoring model reflects defined procedures for regular collection of data on SW
functioning and determination of aggregate indicators for identifying the state of the software
system and risks of its degradation.

2. Preventive identification determines deviations and potentially dangerous SW states based
on an extended method of comparator identification. It is proposed to consider the following

classes of SW degradation risks Q:{ql,qz,qs,q4}, where @, determines stable operating

mode, g, is the SW functioning state with a possible future risk (if a trend of deviation from
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reference states is detected), g, combines states with a tendency to return to the standard and q,

is a class that defines a critical situation (the deviation from the standard exceeds the threshold
and there is a tendency to move away). Therefore
M, :z,D -Q.

Thus, the basic preventive identification model generates an alarm signal for the preventive
monitoring system based on the analysis of the SW status and trends approaching
the reference modes.

3. The task identification component generates structured tasks for the development team
and is an integral part of the decision support system. Task definition is based on a defined risk
class g,, anomaly identification, i.e., the identification of features that influenced the results of
preventive identification, and the existing knowledge base of relevant precedents. Let there be

a set of task templates A:{ai]az,...,ah}, a given function G(z,) for defining essential

features Z,, and a defined class g, . Then the task identification model is
M
tasks and priorities for their implementation are defined.

Z,q > A.

task

So, based on the model M

task
4. The basic model for evaluating the results of actions is designed to measure the effect of
preventive actions taken in terms of reducing the risks of software system degradation.

Let M ={M(“),u :L_U} — a set of metrics (evaluation criteria) for SW quality. Then it is

possible to determine the integral effect of the actions a performed, for example, as

4@=§WAMW@y

In other words, evaluating the actions taken helps determine how the quality of the SW has
changed and provides data for forming pairwise comparisons of states in terms of the obtained
quality metric values, which collectively replenishes the knowledge base of precedents. That is,

M. :A>M,s(a).

eval

Therefore, M

of the development team's work on SW maintenance and the actual impact of the changes made
on the stability and state of the SW.

5. The basic configuration model performs the function of adaptation and
re-identification, i.e., updating the rules and parameters of the comparison model. Let there
be a set of paired comparisons formed at a given moment in time t

C, :{(Zi1zjlyij>} '
where y; determines how the state of the software system has changed (approached or deviated

evaluation of actions allows to form feedback between the planning

eval

from the reference). Let ® determines the parameters of the comparator model used
for preventive identification, then let us denote f,(Z,) as an identification model that

implements transformation M ,; with parameters @ .
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Then the adaptation model implements an iterative cycle
M ORI argm@}nL (C..0)+a®-0.7,

adapt

where L is the functional of the disturbance of the system of comparator equations, « is the
stability parameter.

Thus, at the configuration stage, the preventive identification model is updated over time by
accumulating historical data on the functioning of the software system, which ensures the ability
of the preventive maintenance system to self-adapt.

Example of using a reference model for preventive maintenance

Let's consider a mobile application for patients with diabetes mellitus, which receives
glucose readings from a Bluetooth glucometer, stores measurement history, builds short-term
glucose level forecasts, and issues warnings. Preventive support is critically important for such
an application: degradation of forecast accuracy or failure of sensor data synchronization without
obvious application crashes directly affects medical risks.

During the operation of a software system that interacts with an external sensor device
(glucometer), a stream of raw telemetry data is generated. Raw data is considered to be the direct
results of the application's interaction with the hardware device and internal software
components, which are recorded during the execution of individual read operations.

Each attempt to obtain or process sensor data is considered a discrete point in time,
regardless of whether it was successful or ended in error. Thus, discrete observation moments
correspond to events such as: initiating data reading from the glucometer; receiving
a response from the device or recording a timeout; validating and parsing the received data;
generating a glucose level forecast based on the input measurements. A set of raw data is
recorded for each event:

G(t) — actual glucose level;
G (t) — predicted value;
s(t) — operation result (successful/error);

z(t) — operation execution time.

Raw data is linked to events rather than to the state of the system, has different frequencies
of occurrence, and may contain noise, so it cannot be used directly to assess the functional state
of the system. To transition from raw data to formalized indicators, a set of current indicators is

introduced, r.(t), which are calculated at the level of individual events and have a clear

engineering meaning. Let's introduce three key operational metrics that the monitoring system
collects daily:

n(t)=G(t)- G (t) — instantaneous glucose prediction error (absolute error in mmol/L between
the actual glucose meter reading and the model prediction);

O,ifs(t)= fail -
r, (t) =4 . — incorrect measurement indicator (0 or 1);
1if s(t) = ok
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r, (t) =z (t) — Synchronization time with the glucometer (from screen opening to current
value display, ms).
Monitoring operates in daily windows W, :{t It :1,2,...}, where k is the day number

and t is the event number in the monitoring window. That is, metric values are collected at
discrete points in time throughout the day, forming observation streams. The number

of successful reads is defined as C, = > "r, (t), and the total number of attempts is N, = W, |.
i

For each day, we determine the aggregated features:
x (k)= Ci > \rl (t)\ — mean error per day;

k tri,

C :
X, (k) = N—k — percentage of incorrect read attempts per day;
k

X (k)= NLng (t) — mean synchronization time.

ki
Then the SW state vector can be denoted as x(k)=(x(k),x,(k),x (k)). Thus, raw
telemetry data is converted into current indicators r, (t) at the level of individual events. Next, at

fixed time intervals W,, these indicators are aggregated into a state feature vector x(k) that
describes the functional state of the software system per day (W, interval).

Normalization is introduced to ensure correct combination of features. Normalization
allows: bringing heterogeneous features to a dimensionless scale; assessing the degree
of deviation of the current state from the normal mode; forming integral state indicators and
applying formal identification rules. For a reference stable period (for example, the first 21 days
after release), we form a set of reference states:

K ={12,..., 21}, Z, = {x(k) | kK, }.

For the reference period, we calculate the mean values and standard deviations:

1 z(xi(k)_ﬂi)z, i=123.

=7 in(k)1 Giz =17
KK

‘Kref KK e ‘ ref

Then the normalized features are defined as:

zi(k)=%, i=123.

Normalized state vector:
2(K) = (2.(k),2, (K). 2 (K)).
The obtained normalized vector z(k) is used as input for further comparator identification

and classification of the functional states of the software system. Next, the reference (baseline)
mode of operation of the software system is determined. The set of indices K, can be expanded

using all k that correspond to the period of stable operation. Z :{x(k)|anref}

is a reference set of normalized states. In the simplest case, the reference is represented
by a single representative vector (the center of the reference mode).
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Z,of -1 > z(k),

‘ Kref kK o

where z z(k) means the component-wise sum of vectors, and z,, is the centroid of the set
anref

of normalized states of the reference mode.
We define the deviation from the reference as the weighted Euclidean distance:

d(k)= \/Wl (z1 (K) =2, ¢ )2 + W, (22 (K) =2, ¢ )2 + W, (23 (K) = 23 e )2 C W W, W, =1,
where, for example, we give greater weight to medically critical errors in prognosis:
w, =0,4;w,=03; w,=0,3.
The local (component) deviation is determined separately for each feature:
5, (K) =]z, (k) =2, |.i1=123.

The vector 5(k) is used to explain the results (which metrics caused the growth d (k) and

to further form preventive tasks.
For preventive support, it is important not only to know the current value of the deviation,
but also how it changes over time. To assess the deviation trend, we use a sliding window with

a length of, for example, L =7 days:
d(k)-d(k-L+1
(k)= 2 L(l st

A pair of indicators (d (k), g(k)) is sufficient statistics for further classification of states.

To interpret the monitoring results and support decision-making, a set of discrete classes of the
functional state of the software system is introduced:
R, —normal mode;

R, — deviation from the standard, but there is a tendency for the deviation to decrease;
R, — high-risk mode (preventive intervention is necessary);
R, — critical condition.

Let us introduce predicates for recognizing conditions related to degradation and risks
of the software system:

P, (k) < d(k)<d,determines proximity to the reference mode, d, — the threshold
of proximity to the reference;

Pz(k)c‘g(k)‘sgodetermines proximity to the reference during a sliding window,
g, — the threshold of acceptable trend deviation;

P,(k) < g(k) <0corresponds to a situation of decreasing deviation from the reference,

I.e., there is a tendency to return to the reference;
P, (k) < g(k) > 0 determines the tendency of deviation from the reference mode.
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Then, the correspondence of the state to one of the classes is determined by
the following conditions:

R, (k) = (R (k) AP, (k))=1;

R (k) < (=P (k) AP (k))=1;

R, (k) < (P (k) AP, (k) AP, (k))=1;

Ry (k) < (=P (k) A P, (k) AP, (k)) =1.

Analysis of experimental results for a 60-day period of operation allows us to clearly
illustrate the operation of the proposed classification system. Figure 2 shows a graph of changes
in forecast error values during the experiment.

At the initial interval of the experiment, the values d (k) (see Fig. 3) do not exceed the
threshold d, =1, and the trend g (k) fluctuates near zero, which corresponds to the fulfillment

of conditions (P, (k) P,(k)). This is consistent with the classification of the system into
class R, and confirms a stable mode of operation, which is clearly visible in the graph.

Glucose forecast error trend

MAE prediction (mmaol/l)
e s N

o
[

Fig. 2. x (k) values during 60 days of observation

Integral deviation dik)

Fig. 3. Trend in deviation from the reference mode
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With the onset of monotonous growth of the integral deviation (Fig. 3), it is possible to
signal the formation of a pre-crisis state and the need for preventive action, which is determined
by the transition to class R, . Further simultaneous violation of the conditions of proximity to the

standard and the permissible trend leads to the state being classified as class R,,

which corresponds to the critical state of the software system.
The proposed system of predicates and classes provides a formal link between numerical
monitoring characteristics and engineering decisions. The transition to classes R, and R, is used

as a trigger for the automatic generation of support tickets, in which the values d(k), g(k) and
component deviations serve as justification for the necessary preventive or urgent actions.

The results of the classification of the functional state of the software system are not
communicated to the development team in the form of formal classes or threshold values.
Instead, they are transformed into support tickets (tasks for the development team) containing
a clear description of the problem, quantitative observations, and recommended technical
actions. An example of a ticket in the event of a transition to a class R, (high-risk mode)

is shown in Figure 4.

I Title:

, Gradual deterioration in forecast quality and delays in synchronization with the glucometer
Description:

Over the past few days, there has been a steady increase in the average error of glucose level predictions. At the
, sametime, the time it takes to receive data from the glucometer is increasing. Although the system continues to

1 operate without any obvious malfunctions, there is a negative trend in key performance indicators.
i Observations (aggregated per day):

1 ®  theaverage prediction error has increased by approximately 25-30% compared to the stable period;
1+  theaverage synchronization time with the glucometer has increased by 40-60 ms;

I &  thereareisolated unsuccessful attempts to read data.

I Recommended actions:

' s  checkthe logic of repeated reading attempts and timeouts;
, *  analyze whether the input data characteristics for the prediction module have changed,;

| *  prepare atest update of the prediction model or its parameters if the trend continues.

1 Priority: medium

1 Deadline: planned, by the next release

Fig. 4. Example of a preventive ticket (early degradation)

The example considered demonstrates that the proposed reference model provides
a coherent internal logic for monitoring the state of the software system based on aggregated
operational metrics and their dynamics. The model formalizes the transition from raw data to
integrated indicators of deviation and trends, allowing for the correct identification of both stable
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operating modes and early signs of degradation. The use of formalized classification conditions
ensures the reasonable formation of alerts without the need for rigidly fixed scenarios, and the
analysis of component deviations provides structured information about the possible causes
of deterioration in the quality of the system's operation and directions for its elimination.
This allows the results of identification to be translated into engineering tasks that are
understandable to the development team in the form of standard support tickets.

Thus, the model supports the automated formation of tasks for the development team based
on quantitative observations and their trends, which significantly reduces the time between the
first signs of degradation and the start of engineering intervention. This ensures the transition
from reactive incident resolution to proactive software maintenance in real operating conditions.

Discussion

The comparator identification method [18, 20] is a special variant of solving identification
problems when direct measurement of the parameter of interest is impossible. In classical
identification, an attempt is made to determine the law of their connection based on the input and
output signals of the object. However, in many cases, the output of the system (for example,
the "failure susceptibility level™) cannot be measured directly. For such situations, indirect
identification methods are used, and the most convenient among them is the declared method
of comparator identification.

The idea of using the comparator identification method in the task of preventive SW
maintenance looks promising, since the very nature of the problem corresponds to the setting
of indirect identification. It is not possible to directly measure the "probability of future failure”
or the "level of problematicity” of the system state, but we can compare different states using
indirect reliability indicators. Despite its scientific validity, the practical feasibility of this
method in complex software systems should be critically evaluated.

First, the comparator identification method essentially provides a binary conclusion.
Additional mechanisms are needed for a fine gradation of risks.

Second, the key step — forming a system of equations — requires the availability or
accumulation of representative data on various SW operating situations.

Third, software and its operating environment change over time (updates, new features,
changing loads), so the model will have to be regularly updated as new data becomes available.
This leads to the need to modify the classical method.

In engineering practice, statistical methods and machine learning are more often used for
SW support [9, 15], which usually requires a well-established infrastructure for collecting and
processing large amounts of data. The comparator approach, on the contrary, can introduce
an element of strict justification and interpretability. Its mathematical correctness and ability to
work with fuzzy information provide significant advantages for solving the complex task
of preventive maintenance, where uncertainty and multi-criteria are the main characteristics.
If the method is adapted, it can become part of intelligent maintenance systems, increasing the
objectivity of decisions on preventive measures.
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In general, the idea of applying the comparator identification method is in line with the
global trend towards proactive, data-driven software maintenance and appears promising,
although the effective application of predictive analytics also requires a culture that is ready
to accept the model's recommendations.

The results show that the proposed reference model of preventive support can become

a fundamental basis for the transition from reactive software support to systematic proactive
quality management. Unlike traditional approaches, which focus primarily on fixing already
identified defects, the developed model uses a formalized system of aggregated features,
deviation trends, and comparator assessment, which allows identifying degradation risks without
the presence of obvious failures.

This approach provides early warning of potential problems and creates a basis
for automated task generation, which is especially important in highly dynamic environments
such as mobile applications or systems with machine learning components and smart
manufacturing complexes [21].

It is important to emphasize that the proposed model forms not only a mechanism for

analyzing the state of the software system, but also a closed cycle of its evolution through
adaptive updating of parameters and identification rules. This allows the maintenance system to
respond to changes in the external environment, SW updates, the emergence of new usage
modes, and the dynamics of machine learning models. The adaptive component ensures the
stability of the approach in the long term, preventing accuracy degradation in conditions of data
drift, seasonal load, or changes in user activity profiles.

At the same time, the results highlight a number of important challenges. The effectiveness
of the method largely depends on the quality of the set of reference states and the adequacy
of the selected distance metrics. The presence of insufficiently representative benchmarks or
noisy features can lead to incorrect signals, which is critical in systems where the frequency
of false alarms must be minimized.

Another aspect that requires further research is the integration of the model into real
CI/CD and DevOps processes: determining the frequency of analysis, limitations on computing
resources, communication with the task backlog, and the balance between automated
and manual developer solutions.

Overall, the results obtained indicate the promise of combining comparator identification
with the principles of preventive maintenance. This approach provides a formally justified,
interpreted, and at the same time practically applicable mechanism for detecting hidden
degradation trends, which enhances the overall ability of software systems to self-identify and
proactively improve.

Further research directions may be related to the automatic formation
of reference classes, the expansion of the model by means of machine learning, the verification
of effectiveness on different classes of systems, and the development of prototypes
for integration into the support infrastructure.
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Conclusions

The paper proposes a reference model for preventive software maintenance that covers the
full cycle of proactive software system management, from monitoring and detecting degradation
trends to forming maintenance tasks, evaluating results, and adaptively updating identification
rules. Unlike traditional reactive approaches, the model provides early detection of potentially
dangerous changes in software behavior and allows intervention before critical failures occur.

The analytical mechanism of the model is based on an extended comparator identification
method, which provides a formalized comparison of current states with a set of reference modes
and the identification of deviation trends. This approach makes it possible to detect hidden
degradation processes even in the absence of obvious incidents, which significantly increases the
effectiveness of preventive support.

The adaptive component of the model ensures that identification parameters and rules
remain relevant in dynamic operating conditions, particularly when there are changes in load,
user behavior, or data drift in systems with machine learning components.

The formal models formulated for each element of the reference structure (monitoring,
preventive identification, task definition, result evaluation, and adaptation) create
a comprehensive framework for preventive support. It can be integrated into modern CI/CD,
DevOps, and MLOps processes, serving as a mechanism for improving the reliability, security,
and maintainability of software systems.

The results obtained open up prospects for further research in the areas of automatic
reference state formation, the use of machine learning methods to refine risk class boundaries,
the development of tools for integration with the support infrastructure, and experimental
validation of the model on different types of software products.

The proposed model can become the basis for the creation of intelligent preventive
maintenance systems that ensure the stable and predictable functioning of software complexes in
the long term.
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Yynpuna Anacracis CepriiBHa — KaHIUIaT TEXHIYHUX HAYK, TOIEHT, XapKiBChKUI HAIllIOHATEHUHN
VHIBEPCHTET PaJli0eIeKTPOHIKH, JOUEHT KadeIpH NporpaMHoOi iHkeHepii, XapkiB, YKpaiHa.

PenixoB Bagum MukonaiioBuy — XapkiBCbKUH HalliOHAILHUN YHIBEPCHUTET DPaiOCTEKTPOHIKH,
acripanT kadeapu nmporpamMHoi imkeHepii, Xapkis, YkpaiHa.

OIIOPHA MOJIEJIb IPEBEHTUBHOI'O CYITPOBO/’KEHHA
ITPOT'PAMHOI'O 3ABE3IIEYEHHSA

IIpenmeToM podOTH € TIpoOIleCH NMPEBEHTUBHOTO CYIPOBOKEHHS MTPOTPAMHOTO 3a0e3MedeHHs, 30KpeMa
¢dopmarizauiss MexaHi3MiB MOHITOPHHTY, 1IeHTU(IKail pU3UKIB Aerpaaamii Ta moOyJOBU PillleHb 100
NPOAKTHBHOT'O BTPYYaHHS B JKHUTTEBUI LUKI MPOrpaMHHUX cUcTeM. MeTa DOCTiTKeHHsT — po3poOHTH
OTIOpHY MOJIETb TPEBEHTHUBHOTO CYNPOBODKEHHS, sika 3a0e3leuye CUCTEeMAaTHYHE BUSIBICHHS BiAXUIICHb
BiJl €TAJIOHHUX PEXHUMiB poboTr SW, OLiHIOBaHHS TEHICHLIN IX 3MiHM W TeHepalilo OOIpYHTOBaHHX
MPEBEHTUBHUX i 10 TOSBH KPUTHYHUX BiIMOB. 3 OTJISAY Ha OKpECIeHy MeTy HeoOximHo Oyio
BUKOHATH Taki 3aBAAHHS: 3allPONIOHYBaTH Kiacu(ikalilo METPUK 1 03HAK I onKcy (QyHKIIOHAJIBHOTO
crany SW; moOynyBatu (opMaibHHN amapaT NMPEBEHTHBHOI iAeHTH(IKalii Ha OCHOBI PO3IIMPEHOTO
METO/y KOMIapaTopHOi iIeHTH(iKallil; BA3HAYUTH CTPYKTYPHI KOMIIOHEHTH OTIOPHOI MOJIENi; PO3pOOUTH
MOJeNli MOHITOpMHTY, aHali3y iZeHTH(IKOBaHMX PH3HKIB, KEpyBaHHA 3aadaMy CYHPOBOKEHHS i
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aJlaTHBHOTO OHOBJIICHHS TapaMeTpiB Mojemi. Metoau gociaimzkeHHsi. METONONIOTIYHY OCHOBY
CTaHOBHTH PO3IIMPEHHN METOJ KOMIapaTopHOi ifeHTUdIKalii, IKUi Ja€ 3MOTy HNOPIBHIOBATH MOTOYHI
crand SW 3 CTAIOHHUMH PEeKHMaMH{ Ta KUIBKICHO OITIHIOBATH JWHAMIKY iX BiIXHJIGHHSA. 3aCTOCOBAHO
arperyBaHHs Ta HOpMali3auilo 03HaK, (hopMaizaliro MHOKUHH (DYHKIIOHAJIBHUAX CTaHiB, aHaJi3 YaCOBUX
BIKOH 1 TPEHIOBHX BJIACTUBOCTEH, a TaKOX MEXaHI3MH 3BOPOTHOrO 3B’SI3Ky W aJalTUBHOI KOPEKIii
napamerpi. Jocarnyri pesyabraru. CPOpMOBaHO IT'SITHKOMIIOHEHTHY OIIOPHY MOJIEIb, IO MICTUTh
MOJIeNli: MOHITOpUHTY cTany SW; mpeBeHTHBHOI ineHTH(iKaLil pU3MKiB Aerpaaauii; GopMyBaHHS 33134
CyTIPOBOKCHHS;, OIIHIOBAHHS PE3yIbTaTUBHOCTI IPEBESHTHBHUX Jii; aganTaiii mapamerpiB. Po3pobiieHa
MoJiens 3a0e3rnedye BUSBIICHHS JIATEHTHUX TPOLECIB Jierpajamii 3a JOIMOMOToI0 aHali3y TPaeKTopii
BiJIXWJIEHB, iHTErpyeThest B cydacHi mporiecd CI/CD, DevOps i MLOpS ta crBOproe ¢opmaitizoBaHuit
MEXaHi3M MIATPUMKHA TPUAHATTS PilIeHb 00 BYACHOTO CYyNPOBOKEHHS. BHCHOBKH. 3arrporioHOBaHa
MoJens GpopMmye LHiTicHUE GopManbHui GpeiMBOPK MPEBEHTUBHOTO CYIPOBOKEHHS, CIPSMOBAaHUNA Ha
paHHE BUSBICHHS MOTCHIIWHUX BIAMOB 1 MATPUMKY JOBIOCTPOKOBOI CTaO1IBHOCTI IPOTPAMHHX CHCTEM.
AanTUBHHN XapakTep Mojiesli 3a0e3mnedye i1 akTyalbHICTh y JUHAMIYHHUX yMOBax eKCIUTyaraiii, a
3aCTOCYBaHHS KOMMApaTOpHOi imeHTHdiKkamii MiABHILYE IHTEPIPETOBaHICTh 1 OOTPYHTOBAHICTh
MPUHHATUX pimeHb. OTpUMaHi pe3ylbTaTH CTBOPIOIOTH MIATPYHTS ISl PO3POOJICHHS IHTENEKTyaTbHUX
CHCTEM CYMPOBOIKEHHS M MOAaNbIIUX NOCTIDKEHb 3 aBTOMaTu3alii (JOpMyBaHHsS €TaJIOHHHUX CTaHIB i
PO3LIMPEHHS MOl 3ac00aMi MaIIMHHOTO HaBYaHHSL.

Knaw4oBi ciioBa: mpeBeHTHBHE CYIPOBODKEHHS; KOMIIapaTopHa iJeHTU(IKaIlis; MOHITOPHUHT;
TEeXHIYHHMIA OOpT; MPOTHO3YBaHHS nerpanartii; skicts 113; DevOps; MLOps.
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