

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

© Glavchev M., Hlavchev D., Panchenko V., 2025

182

UDC 004.8 + 004.056.5 DOI: https://doi.org/10.30837/0135-1710.2025.187.182

M. Glavchev, D. Hlavchev, V. Panchenko

EVALUATING THE EFFECTIVENESS OF OPEN-SOURCE SOLUTIONS

FOR MONITORING AND LOAD BALANCING
IN MICROSERVICE APPLICATIONS

Subject of Research. Subject of the article is open-source solutions and their application for monitoring and load
balancing in microservice applications operating in specialized computer systems. The research covers a wide range
of tools, including metric collection systems, centralized logging, and distributed request tracing. Relevance of the
work is determined by the constant growth in complexity of distributed architectures and the critical need for effective
performance control (observability) and stable traffic distribution. Goal. The goal of the work is comprehensive
empirical evaluation and comparison of key open-source monitoring and load balancing tools, specifically
Prometheus/Grafana (for metrics), ELK stack (for logs), HAProxy, Nginx, Traefik (load balancers), as well as Istio
and Linkerd (service mesh), with the goal of developing practical recommendations for designing and operating
microservice systems. Tasks. The tasks are conduct analysis of popular open-source tools, define criteria for their
effectiveness, create a test environment based on Kubernetes and conduct a series of load tests with various
configurations, as well as perform quantitative assessment of key performance indicators, including latency,
throughput, and resource utilization. Methods. Applied methods of systematic analysis, empirical modeling, and
benchmarking. For objective comparison, load testing methods (baseline and stress scenarios) were used in
a Kubernetes cluster. Key evaluation criteria included request processing latency, throughput, and resource overhead
of the tools themselves. Result. The obtained results confirm that open-source solutions are capable
of providing high-level observability and effective load balancing in specialized computer systems, while remaining
a cost-effective alternative to commercial products. The study identified strengths and weaknesses of each tool,
allowing for informed selection based on specific project requirements. Conclusions. Confirmed the ability of open-
source tools to effectively provide observability and load management in specialized computer systems, remaining
a cost-effective alternative to commercial products. The conclusions made allow for the formulation of practical
recommendations for designing and operating microservice applications with a focus on stability and performance.
The research results can be used in making architectural decisions for distributed systems of various scales.

Keywords: load balancing; microservice; monitoring; open-source; service mesh; specialized computer system.

Introduction

Problem statement. Modern information systems are increasingly being designed based on

microservice architecture. This approach involves dividing a complex application into a set of
relatively independent services, each of which performs clearly defined functions and can be
deployed separately. The use of microservices increases development flexibility, scalability, and
system resilience, which is especially important in specialized computer systems, such as
telecommunications platforms, financial solutions, or industrial IoT complexes.

At the same time, microservice architecture creates new challenges. The significant
complexity of the structure necessitates effective performance monitoring, tracking
dependencies between services, and load balancing between different application instances.
In the event of high loads or uneven distribution of requests, there is a risk of performance

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

183

degradation or even failure of individual components, which can negatively affect the functioning
of the entire system.

Traditionally, monitoring and load balancing tasks have been solved using commercial tools,
which often have closed code and significant licensing costs. However, in recent years,
an ecosystem of open-source solutions has been actively developing, providing a wide range of
functions and not inferior in capabilities to many commercial counterparts. The most well-known
of these tools include Prometheus and Grafana (metrics collection and visualization), ELK stack
(report collection and analysis), HAProxy, Nginx, and Traefik (load balancing at L4/L7 levels), as
well as specialized infrastructure-level solutions for facilitating communication between services,
service mesh – Istio and Linkerd, which integrate directly into the Kubernetes environment and
provide flexible management of network flows.

The relevance of the study is due to the need to verify the effectiveness of these solutions
in the real conditions of specialized computer systems. For practical application,
it is important not only to compare capabilities theoretically, but also to evaluate key performance
indicators experimentally:

– average request processing delay and delays at the p95/p99 percentile levels;
– system throughput (number of requests processed per second);
– resource usage (central processing unit – CPU, random access memory – RAM) by

the tools themselves;
– ease of integration into existing microservice architectures.
Analysis of recent studies and publications. In operational microservice systems, metrics,

reports (logs), and tracing are most often combined; at the same time, the priority metrics are
latency (including p95/p99), throughput, and resource consumption (CPU/RAM) of monitoring
tools. A practical picture of the implementation of such approaches is provided by an empirical
study of practitioners [1], which identifies log management, exceptions, and load balancing as
subjects of constant performance monitoring among standard practices. A systematic review of
monitoring tools (71 OSS solutions), their capabilities and limitations, is presented in the JSS
review [2], which is useful for forming criteria for selecting an observability stack for a specific
specialized computer system (SCS). In terms of log analytics, the focus on the ACM Computing
Surveys [3] review allows us to align the choice of ELK (Elasticsearch, Kibana & Logstash)/related
tools with modern methods of parsing, anomaly detection, and datasets for validation. These three
sources form the methodological basis of the monitoring section of our study.

The classic CACM paper on Borg–Omega–Kubernetes [4] justifies the evolution to
containerized load management and the importance of resource isolation for combining latency-
sensitive services with batch tasks. An early experimental comparative analysis of microservices
in containers and in a monolith [5] confirmed the suitability of containers for low overhead and
rapid scaling. For experimental research, it is important to have a formal basis in the resource
models of Kubernetes systems, which provide resource consumption forecasts and help correlate
the overhead costs of monitoring/mesh/LB with the performance of microservices. A recent JSS
article on building such models is useful here [6].

When choosing open-source load balancers at the L4/L7 level (HAProxy, Nginx, Traefik,
Envoy), pay attention to key parameters such as latency, throughput, and stability under high load.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

184

Practical measurements in server WWW infrastructures showed similar results for HAProxy and
Nginx under high loads, with the best performance seen in Linux Virtual Server (LVS approach)
[7]. Some studies offer mathematical models for analyzing HAProxy performance, including
MMAP/PH/M/N queues and Monte Carlo simulation with confirmation by measurements on a test
bench [8]. For Kubernetes environments, Ingress controllers were additionally considered:
a 2024 IEEE paper compares implementations and balancing algorithms specifically in
a Kubernetes cluster, which directly coincides with our experimental setup [9–11]. Together, these
sources outline the trade-offs between pure L4 performance and L7 policy flexibility
for microservice applications.

Service mesh adds L7 routing, observability, and security policies (mTLS mutual
authentication) to the system, but introduces latency and CPU/memory consumption.
A detailed analysis of sidecar proxy overhead with measured effects on latency (increase
to ~2.7× on certain configurations) and virtual central processing unit (vCPU) [12] shows that the
amount of overhead depends heavily on the configuration (TCP proxying vs. protocol parsing) and
workload. A comparison of Istio and Linkerd in edge conditions showed Linkerd to be more
"edge-friendly" due to lower overhead [13]. A separate technical report on the impact
of mTLS in different implementations (Istio, Ambient Istio, Linkerd, Cilium) helps to separate
security and performance effects in experimental design [14]. Additionally, the performance of
a mesh cluster also depends on related Kubernetes components – for example, the etcd
configuration, which affects the overall behavior of the control plane and the application [15].
Collectively, these works set a corridor of expectations for observability overhead and security
policies, which we will take into account when planning tests.

A separate class of work focuses on container platforms and their interaction with
balancing/monitoring. Review and applied articles propose load balancing mechanisms in
Docker-/Swarm-/Kubernetes environments for productive and resource-constrained scenarios,
including big data and edge [16]. At the same time, the Ingress layer in Kubernetes remains
an active field of comparison (implementations, algorithms, overhead), where recent IEEE results
[9] allow the experiment to be enriched with practical configurations. Together with resource
consumption models [6], this provides a methodologically correct correlation
of observability, balancing, and performance in a microservice SCS.

The purpose of this article is to study the effectiveness of open-source solutions for monitoring
and load balancing in microservice applications running on specialized computer systems.

To achieve this goal, the following tasks must be solved:
– review modern open-source tools in the field of monitoring and balancing;
– determine the criteria for evaluating their effectiveness in the context of microservice

application performance;
– build an experimental environment using a test microservice application;
– conduct a series of load tests using different tools and record the results;
– perform a comparative analysis of the data obtained and formulate

practical recommendations.
Thus, the work aims to bridge the gap between the theoretical capabilities of open-source tools

and their actual effectiveness when used in SCS.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

185

Presentation of the main material

1. Theoretical aspects

1.1. Microservice architecture and performance
Microservice architecture is one of the leading approaches to building modern distributed

applications. A microservice is an independent software component that implements a separate
business function and interacts with other components through well-defined interfaces, primarily
via the API interface of the HTTP/gRPC remote procedure call system or asynchronous message
queues. This architecture provides development flexibility, the ability to choose the optimal
technologies for each service, as well as deployment isolation and scaling independence.
For SCS, the microservice approach is particularly valuable because it allows computing resources
to be distributed across subsystems and complex data flows to be managed efficiently.

In the context of microservice applications, system performance is determined by its ability
to process the required volume of requests with minimal delays and optimal use of computing
resources. Important performance characteristics include average and percentile request
processing delays (latency), throughput, and the level of utilization of the processor, RAM,
and network resources. In SCS, performance is considered not only as a quantitative characteristic,
but also as stability under peak loads, which requires the ability to automatically scale and adapt
to dynamic conditions.

To formalize the task of performance evaluation, we introduce the following mathematical
definitions and notations, which will be used in the experimental part of the study.

Definition 1. Let the system consist of a set of microservices ,{ ., }, .. nS s s s= ₁ ₂ ,

where each service is is characterized by a vector of performance parameters (), ,i i i iP L T R= ,

where iL is the request processing delay, iT is the throughput, and iR is
the resource consumption.

Definition 2. The request processing delay L is defined as the time interval between the
moment the client sends the request requestt and the moment the response is received responset :

 –response requestL t t= . (1)

Since the distribution of delays in microservice systems usually has a long tail, using only the
average value is insufficient for an objective assessment. Therefore, the study uses percentile
analysis, which allows us to evaluate the stability of the system for the vast majority of users.

Definition 3. The average delay is calculated as the arithmetic mean of all measurements:

 n ii 1

1L Σ L .
n =

 = × 
 

 (2)

Definition 4. The delay percentile p (e.g., 95p , 99p) is defined as the delay value that is not

exceeded for p percent of all requests:

[]()95 0,95p nL L ×= . (3)

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

186

Definition 5. The throughput of a system T is defined as the number of successfully processed
requests per unit of time:

/requests intervalT N t= . (4)

Definition 6. The resource overhead coefficient resourceO characterizes the additional

consumption of resources (CPU or RAM) by a monitoring or balancing tool relative
to the baseline:

()_ – / 100%resource with tool baseline baselineO R R R = × . (5)

For a comprehensive assessment of the tool's effectiveness, an integrated indicator is proposed
that takes into account all key characteristics with corresponding weighting coefficients:

() ()991 / 1 /p resourceE L T O= α × + β × + γ × , (6)

where , , α β γ are weighting coefficients determined by the priorities of a specific specialized
computer system (SCS). For example, for latency-critical systems, α > β > γ , while for
resource-constrained edge systems, γ > α ≈ β is appropriate.

1.2. Monitoring and observability
Monitoring is another important component, which involves the systematic collection,

aggregation, and analysis of data on the functioning of the system. In microservice architectures,
it is key to achieving observability, i.e., the ability to draw conclusions about the internal
state of the system based on its external manifestations. Effective monitoring allows
for the timely detection of performance degradation, service interaction failures,
or security-threatening attacks.

According to the concept of the "three pillars of observability" [1–3], effective monitoring of
microservice systems is based on three complementary components: metrics (quantitative
indicators of the system's state), logs (event records), and tracing (tracking the path of a request
through the system).

Based on an analysis of scientific sources [1–6] and the practical needs of the SCS, a system
of criteria was developed to evaluate the effectiveness of open-source monitoring and load
balancing tools (Table 1).

Table 1. Criteria for evaluating the effectiveness of tools

Criterion Description Metric Priority
Latency Request processing time from receipt

to response
p95, p99 (ms) High

Bandwidth Number of requests processed per unit
of time

RPS High

Resource overhead Additional CPU and RAM
consumption by tools

% CPU, MB RAM Medium

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

187

Continuation of the table 1

Criterion Description Metric Priority
Scalability Horizontal scaling capability Number of nodes Medium

Integration complexity Time and effort required to
implement the tool

Hours/days Low

Stability Ability to maintain performance
under load

σ (deviation) High

Source: developed by the authors

2. Open-source solutions

Among the most common open-source monitoring tools, it is worth highlighting Prometheus
for collecting metrics, Grafana for visualization, ELK stack for centralized logging, as well as
service mesh components, in particular Istio and Linkerd, which provide distributed request
tracing. For a systematic analysis of existing solutions, open-source tools were classified according
to their functional purpose (Table 2).

Table 2. Classification of open-source tools according to their functional purpose

Category Tool Main function OSI Level

Monitoring
(metrics)

Prometheus Metrics collection and storage Application (L7)
Grafana Visualization and alerting Application (L7)

Monitoring (logs)

Elasticsearch Indexing and search Application (L7)
Logstash Collection and transformation Application (L7)
Kibana Log visualization Application (L7)

Load balancing HAProxy High-performance proxy Transport/Application (L4/L7)
Nginx Web server and reverse proxy Application (L7)
Traefik Cloud-native edge router Application (L7)

Service Mesh

Istio Full-featured mesh Application (L7) + mTLS
Linkerd Lightweight mesh Application (L7) + mTLS

Source: developed by the authors based on [2, 7–14]

2.1. Monitoring tools
Prometheus + Grafana. Prometheus implements a pull model for collecting metrics, in which

the server periodically polls application endpoints. This approach provides centralized control over
the frequency of collection and allows new services to be automatically discovered through the
service discovery mechanism [17, 18].

Prometheus stores data in its own time series database (TSDB), optimized for fast recording
and aggregation of metrics.

The PromQL query language provides powerful tools for aggregating and analyzing metrics.
For example, to calculate the 95th percentile of HTTP request latency over the last 5 minutes,
the following query is used:

histogram_quantile(0.95, rate(http_request_duration_seconds_bucket[5m]))

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

188

This query directly corresponds to the Lp95 metric defined in formula (3). Grafana provides
visualization of collected metrics through a flexible dashboard system and supports threshold-
based alert configuration.

ELK Stack (Elasticsearch, Logstash, Kibana) provides centralized log management and deep
event analytics [3]. Elasticsearch uses an inverted index for fast full-text search, allowing millions
of records to be analyzed in seconds. Logstash acts as a data aggregator and transformer,
supporting over 200 plugins for various sources. Kibana provides an interface for log visualization
and analysis. In terms of log analytics, the focus on the ACM Computing Surveys log review [3]
allows ELK to be aligned with modern parsing methods, anomaly detection,
and validation datasets.

A comparative overview of the monitored tools is provided in Table 3.

Table 3. Comparative characteristics of monitoring tools

Parameter Prometheus + Grafana ELK Stack
Data type Time series metrics Unstructured and structured logs

Collection model Pull (HTTP scraping) Push (via Beats/Logstash)
Query language PromQL Lucene / KQL

Storage TSDB (local, up to 15 days) Elasticsearch (distributed)
K8s integration Native (service discovery) Via Filebeat/Metricbeat

Alerting Alertmanager (flexible rules) Watcher / ElastAlert
Resource capacity Low–medium High (especially Elasticsearch)

License Apache 2.0 / AGPL Elastic License 2.0
Source: developed by the authors based on [2, 3, 17, 18]

2.2. Load balancers
When choosing open-source load balancers at the L4/L7 level (HAProxy, Nginx, Traefik,

Envoy), pay attention to key parameters such as latency, throughput, and stability under high load.
Practical measurements in server WWW infrastructures showed similar results
for HAProxy and Nginx under high loads, with the best performance observed in Linux Virtual
Server (LVS approach) [7].

A key aspect of the comparison is the load balancing algorithms, which directly affect the
uniformity of request distribution and, accordingly, latency metrics. The main algorithms are
formalized as follows.

Round Robin (RR) – cyclic distribution of requests between servers with equal weight:
()1 ,next currentserver server mod N= + (7)

where N is the number of available servers.
Least Connections (LC) – selection of the server with the fewest active connections:

{ } ()1..next i iNserver arg min connections∈= . (8)

HAProxy is optimized for maximum performance and supports operation at the L4 (TCP)
and L7 (HTTP) levels. According to studies [7, 8], HAProxy demonstrates the lowest latency
among the load balancers considered when operating at the L4 level. Some studies offer

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

189

mathematical models for analyzing HAProxy performance, including MMAP/PH/M/N queues and
Monte Carlo simulations confirmed by test bench measurements [8].

Nginx is positioned as a universal web server with reverse proxy and load balancing functions.
Its asynchronous event-based architecture ensures efficient processing of a large number
of concurrent connections. Advanced SSL termination and caching capabilities make it ideal for
web-oriented applications [9].

Traefik is designed as a cloud-native edge router with native support for Docker and
Kubernetes. Key advantages include automatic service discovery and dynamic configuration
without rebooting, as well as built-in integration with Let's Encrypt for automatic TLS
certificate management [10]. For Kubernetes environments, Ingress controllers were additionally
considered: the 2024 IEEE paper compares implementations and balancing
algorithms specifically in the Kubernetes cluster, which directly coincides with our
experimental setup [9–11].

A comparative analysis of the studied balancers is presented in Table 4.

Table 4. Comparative characteristics of load balancers

Parameter HAProxy Nginx Traefik
OSI level L4 / L7 L7 L7

Algorithms RR, LC, Source, URI RR, LC, IP-hash WRR, Mirroring
SSL termination Yes Yes (extended) Yes (Let's Encrypt)
Health checks TCP, HTTP, Agent Passive, Active Docker/K8s native

K8s integration Ingress Controller Ingress Controller Native (CRDs)
Configuration Static (file) Static (file) Dynamic (auto-discovery)

Optimization for Max. throughput Web services DevOps/Cloud-native
License GPL v2 BSD-2 MIT

Source: developed by the authors based on [7–11]

2.3. Service Mesh solutions
Service mesh adds L7 routing, observability, and security policies (mTLS mutual

authentication) to the system, but introduces latency and CPU/memory consumption.
A detailed analysis of sidecar proxy overhead with measured effects on latency (increase
to ~2.7× on certain configurations) and virtual central processing unit (vCPU) [12] shows
that the amount of overhead depends heavily on the configuration (TCP proxying vs. protocol
parsing) and workload.

Istio is the most feature-rich solution based on the Envoy proxy. It provides complete control
over traffic through VirtualService and DestinationRule, including canary deployments, circuit
breaking, and fault injection [12]. Research [14] has shown that enabling mTLS increases latency
by 15–20%, which corresponds to formula (5) for calculating overhead. The performance
of a mesh cluster also depends on related Kubernetes components, such as etcd configuration,
which affects the overall behavior of the control plane and the application [15].

Linkerd is positioned as a lightweight service mesh with an emphasis on simplicity and
minimal overhead. The linkerd2-proxy, written in Rust, ensures low resource consumption.
A comparison of Istio and Linkerd in edge conditions showed Linkerd to be more

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

190

"edge-friendly" due to lower overhead costs [13]. A separate technical report on the impact
of mTLS in different implementations (Istio, Ambient Istio, Linkerd, Cilium) helps to separate
security and performance effects in experimental design [14].

A comparative analysis of Istio and Linkerd is presented in Table 5.

Table 5. Comparative characteristics of Service Mesh solutions

Parameter Istio Linkerd
Proxy architecture Envoy (C++) linkerd2-proxy (Rust)

mTLS Yes (configured) Yes (default)
Traffic management Full (VirtualService,

DestinationRule)
Basic (TrafficSplit)

Observability Metrics, Logs, Traces Metrics, Traces (golden metrics)
Latency overhead 2–3 ms (up to ~2.7× without mTLS) <1 ms

CPU overhead (sidecar) ~100–150 mCPU ~20–50 mCPU
RAM overhead (sidecar) ~50–100 MB ~10–20 MB

Complexity of implementation High Low
Recommended environment Enterprise, complex policies Edge, resource-constrained

Source: developed by the authors based on [12–15]

2.4. Summarizing the results of theoretical analysis
A separate class of works focuses on container platforms and their interaction with

balancing/monitoring. Review and applied articles propose load balancing mechanisms
in Docker/Swarm/Kubernetes environments for productive and resource-constrained scenarios,
including big data and edge [16]. Together with resource consumption models [6], this provides a
methodologically correct correlation of observability, balancing, and performance in
a microservice SCS.

Based on the analysis, a matrix of tool compatibility with typical usage scenarios (Table 6) has
been formed, which allows for a reasoned approach to the selection of solutions for specific SCS.

Table 6. Matrix of tool compatibility with usage scenarios

Scenario HAProxy Nginx Traefik Istio Linkerd
Highly loaded systems +++ ++ + + ++

Web applications
(e-commerce)

++ +++ ++ + +

DevOps/CI-CD environments + + +++ ++ ++
Enterprise with security

requirements
+ + + +++ ++

Edge/IoT with limited
resources

++ + + – +++

Note: +++ – best solution; ++ – good; + – acceptable; – not recommended
Source: developed by the authors

Thus, the work aims to bridge the gap between the theoretical capabilities of open-source tools

and their actual effectiveness when applied in SCS.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

191

The theoretical analysis allows us to formulate hypotheses about the expected results of the
experimental study:

1. HAProxy will demonstrate the lowest latency values (p95, p99) among load balancers due
to optimization for L4 operation;

2. Istio with mTLS enabled will have the highest resource overhead due to additional
encryption operations;

3. Linkerd will provide the optimal balance of functionality and overhead for edge
environments;

4. Traefik will demonstrate the greatest ease of integration into the Kubernetes environment
thanks to its auto-discovery mechanism.

These hypotheses are tested in the experimental part of the study, the methodology and results
of which are presented in the next section.

3. Testing the microservice application
To test the effectiveness of open-source solutions in the field of monitoring and load

balancing, a test environment was created that replicates the typical operating conditions of
an SCS with a microservice architecture.

Description of the environment. The test application consisted of a set of microservices
implemented in Docker containers and deployed in a Kubernetes cluster. The architecture included
an authentication service, a user management service, a business logic service, and
a database accessible through a separate data access service.

To reproduce a real-world load scenario, the application was wrapped in an API gateway that
provided external access to the system.

Tool integration. The following open-source solutions were gradually integrated
into the cluster:

– Prometheus + Grafana – for collecting and visualizing metrics (latency, throughput, CPU,
RAM, network I/O);

– ELK stack – for centralized log collection and analysis;
– HAProxy, Nginx, and Traefik – as external load balancers at the L4 and L7 levels;
– Istio and Linkerd – as service mesh implementations for internal load balancing and traffic

monitoring.
Testing methodology. Apache JMeter and k6 tools were used to generate load, which allowed

us to reproduce various user activity scenarios. Testing was conducted in two modes:
1. A stable environment with a uniform load over a long period of time (baseline tests).
2. Stress tests with sharp peaks in request intensity, simulating peak periods of operation.
Metrics and evaluation criteria. System performance was evaluated based

on the following indicators:
– latency (average, p95, p99);
– throughput (number of requests per second);
– resource consumption (CPU, RAM) by monitoring and balancing tools;
– operational efficiency, i.e., ease of tool integration and speed of configuration.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

192

Experiment scenarios. For each tool, a series of tests was conducted with varying
parameters:

– in the case of HAProxy/Nginx/Traefik, round-robin, least-connections, and IP-hash
algorithms were compared;

– in the case of Istio/Linkerd, the impact of enabling mTLS, retry mechanisms, and rate
limiting policies was evaluated;

– for Prometheus/Grafana and ELK stack – the overhead of data collection at different
intervals and log volumes was analyzed.

Expected results. The experiment was expected to yield quantitative data that would allow
comparing the effectiveness of different approaches to balancing and monitoring. In particular,
we planned to determine:

– which tools provide the least overhead under high load;
– which configurations provide the optimal balance between performance and management

flexibility;
– how much the implementation of a service mesh affects delays compared to classic load

balancers.
Fig. 1 shows a diagram of the experimental microservices environment, which shows the user,

load balancers (HAProxy/Nginx/Traefik), API Gateway, services, database, as well as the
integration of monitoring tools (Prometheus + Grafana, ELK) and service mesh (Istio/Linkerd).

Auth

Service

User
Service

API
Gateway

Istio /
Linkerd

Database
HAProxy /

Nginx /
Traefik

User

Business
Logic

Service

Prometheus Grafana ELK

Fig. 1. Diagram of the experimental microservices environment

Source: developed by the authors

During experimental research, a series of tests was performed in two scenarios: stable
load (Baseline) and stress tests with periodic intensity peaks (more than 600 measurements
were performed).

1) Scenario characteristics
In baseline mode, the system demonstrated an average intensity of ≈1500 requests per second (RPS)

with fluctuations of no more than ±5%. The average p95 latency was 90±3 ms, p99 – 130±5 ms, which

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

193

corresponds to normal operating mode. During stress tests, the intensity ranged from 1400
to 3500 RPS, and p95 delays increased by 20–40 ms, p99 – by 30–70 ms, depending on the
balancing tool (Fig. 2).

This confirms the typical pattern of performance degradation under peak loads. This behavior
allowed us to evaluate the ability of the tools to maintain stability during short-term overloads.

The graph in Fig. 3 shows that in the baseline scenario, p95 remained stable (≈90 ms), while
in the stress scenario, it increased to 120–140 ms at peaks. This indicates a typical response
of microservice architecture to uneven load, where some services become a "bottleneck".

Fig. 2. RPS load scenarios over time
 Source: developed by the authors

Fig. 3. Dynamics of p95 delays (baseline vs stress)
 Source: developed by the authors

2) Comparison of tools
All tools showed differences in both average values (Fig. 4) and stability of results (Fig. 5)

when averaged over a 10-minute test.

Fig. 4. Comparison of tools (Baseline p99)
 Source: developed by the authors

Fig. 5. Comparison of tools by throughput in a
stress scenario

 Source: developed by the authors

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

194

HAProxy showed the best results for latency (p95 = 88±2 ms; p99 = 128±4 ms in baseline)
and maintained the lowest values even under stress load (p95 = 108±4 ms). Throughput remained
stable (≈1800 RPS at peaks).

Nginx was slightly inferior to HAProxy, especially in terms of p99 (135±5 ms),
but provided greater flexibility in routing, which is important for web-oriented services.

Traefik showed greater overhead: p99 in baseline – 142±5 ms, in stress tests – 190±7 ms,
but stood out for its ease of integration with Kubernetes and automation of TLS certification.

Linkerd showed the best balance between performance and resource consumption (baseline
p95 ≈ 105±3 ms; p99 ≈ 158±6 ms), making it suitable for edge environments.

Istio showed higher latencies (baseline p95 = 110±4 ms; p99 = 165±6 ms), and even higher
with mTLS enabled (p95 = 125±5 ms; p99 = 185±8 ms).

However, its functionality (detailed access policies, security, monitoring) significantly
exceeds that of alternatives.

The effectiveness of open-source tools for monitoring and load balancing depends on the
usage scenario and the requirements of the specialized computer system.

3) Resource overhead costs
The data confirm (Table 7) that in the baseline scenario, the difference between the

instruments is less noticeable, but during stress loading, the differences become significant.

Table 7. Summary results by tools

Tool
Baseline
p95 (ms)

Baseline
p99 (ms)

Baseline
RPS

Stress p95
(ms)

Stress p99
(ms)

Stress
RPS

CPU
overhead

(%)

RAM
overhead

(MB)
HAProxy 88 128 1500 108 165 1800 6.5 180

Nginx 92 135 1470 116 178 1750 7.2 220
Traefik 95 142 1420 122 190 1680 8.0 260

Istio (mTLS off) 110 165 1350 140 225 1580 12.5 420
Istio (mTLS on) 125 185 1300 165 260 1500 16.0 520

Linkerd 105 158 1380 135 210 1620 10.5 360
Source: developed by the authors

The overhead graphs (Fig. 6; 7) show:
– the lowest CPU and RAM consumption was recorded in HAProxy (≈6.5% CPU,

180 MB RAM) and Nginx (≈7.2% CPU, 220 MB RAM);
– Traefik required more resources (≈8% CPU, 260 MB RAM), which is explained by the

dynamic nature of the configuration;
– Linkerd had an average overhead (≈10.5% CPU, 360 MB RAM);
– Istio created the most load, especially with mTLS (≈16% CPU, 520 MB RAM), which can

be critical in resource-constrained environments.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

195

No tool is universal; the choice should be made based on the balance between performance,
functionality, and resource capabilities of a particular architecture.

Fig. 6. Overhead CPU
 Source: developed by the authors

Fig. 7. Overhead RAM
 Source: developed by the authors

Conclusions

Thus, a study was conducted that confirmed the relevance of using open-source solutions

for monitoring and load balancing in microservice applications operating in SCS. The increasing
complexity of architectural solutions and the demand for high performance require tools that
can simultaneously provide observability, flexible traffic management, and efficient
resource utilization.

Analysis of theoretical aspects showed that monitoring and balancing remain key elements in
supporting the performance of microservice environments. The use of the Prometheus + Grafana
combination allows for the effective collection and visualization of metrics, while the ELK stack
provides centralized log management and deep event analytics. The HAProxy, Nginx, and Traefik
balancing tools demonstrated different strengths: from maximum performance (HAProxy) to
flexible routing (Nginx) and ease of integration into DevOps processes (Traefik). The Istio and
Linkerd service mesh solutions showed advanced traffic and security management capabilities,
but at the cost of higher resource overhead.

The experimental part of the study made it possible to evaluate the real effectiveness of using
various open-source tools in microservice architectures. In stable load scenarios, HAProxy
demonstrated the lowest latency and highest stability, confirming its focus on high performance
and optimization for handling large numbers of concurrent connections. This balancer
demonstrated the ability to maintain stable throughput even under heavy load conditions, ensuring
low p95 and p99 latency values.

In situations with sharp load spikes, HAProxy also remained the most stable, while Istio with
mTLS enabled showed a noticeable degradation in performance.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

196

This is due to the additional overhead of traffic encryption and access policy management,
which significantly impacted latency and system throughput. Nginx and Traefik took intermediate
positions, providing a compromise between performance and functionality.

Nginx proved to be convenient for web-oriented systems, as it provides flexible
routing capabilities and supports SSL termination. Traefik, in turn, stood out for its ease
of integration with Kubernetes and automatic TLS certificate management, making it attractive for
DevOps environments.

Linkerd deserves a special mention, as it showed the best balance of performance and resource
efficiency compared to Istio. Although it has slightly less functionality, it provides lower latency
and less overhead, making it suitable for resource-constrained environments or edge systems.

The results of the experimental study made it possible not only to evaluate the performance
of open-source tools, but also to formulate a number of practical recommendations for their
application in real-world conditions.

For highly loaded specialized systems, where the primary task is to minimize latency and
ensure maximum stability during peak loads, HAProxy is the most appropriate choice.
This balancer showed the best p95 and p99 performance and confirmed its ability to maintain high
throughput without critical degradation.

For web-oriented services that serve end users and require complex routing rules, Nginx is the
optimal solution. Its ability to perform

SSL termination and support for advanced HTTP routing scenarios makes it convenient for
e-commerce, portals, or online services.

For DevOps environments focused on containerization and CI/CD process automation,
Traefik is the most effective. Thanks to its dynamic integration with Kubernetes and Docker,
it greatly simplifies traffic management.

Finally, Linkerd has proven itself suitable for resource-constrained environments where a
balance between performance and resource efficiency is important. At the same time, Istio should
be used in large enterprise systems with high requirements for security, access control policies,
and comprehensive monitoring, even despite its higher overhead.

Thus, the results of the study confirm that open-source tools are capable of providing effective
monitoring and load balancing in microservice architectures. The choice of a specific solution
should be based on a balance between performance, functionality, and resource constraints of
a specialized computer system.

The analysis outlined three key areas for further research aimed at improving the efficiency

of SCS:
1. Modeling and minimizing service mesh overhead. It is critically important to develop

detailed mathematical models for accurate prediction of sidecar proxy overhead (Istio, Linkerd) in
latency-critical environments, taking into account dynamic configurations (mTLS, L7 filters),
as well as comparisons with new architectures such as Ambient Mesh.

2. Development of adaptive load balancing algorithms driven by metrics (Metric-Aware
Balancing). It is necessary to implement dynamic routing that uses real-time service quality
metrics from Prometheus, ensuring the transition to service quality balancing.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

197

3. Application of machine learning (ML) methods for proactive monitoring and scaling
management. ML integration will enable the creation of models to predict performance
degradation and detect anomalies in logs (ELK stack) before a failure occurs, which is critical for
improving the resilience of modern SCS.

References

1. Waseem, M., Liang, P., Shahin, M., Di Salle, A., Márquez, G. (2021), "Design, Monitoring, and

Testing of Microservices Systems: The Practitioners' Perspective", Journal of Systems and Software,
No. 182, P. 111061. DOI: https://doi.org/10.1016/j.jss.2021.111061

2. Giamattei, L., Guerriero, A., Pietrantuono, R., et al. (2024), "Monitoring tools for DevOps and
microservices: A systematic grey literature review", Journal of Systems and Software, No. 208,
P. 111906. DOI: https://doi.org/10.1016/j.jss.2023.111906

3. He, S., Zhu, J., He, P., Lyu, M.R. (2021), "A Survey on Automated Log Analysis for Reliability
Engineering", ACM Computing Surveys, No. 54(6), P. 123. DOI: https://doi.org/10.1145/3460345

4. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J. (2016), "Borg, Omega, and Kubernetes",
Communications of the ACM, No. 59(5), P. 50–57. DOI: https://doi.org/10.1145/2890784

5. Amaral, M., Polo, J., Carrera, D., et al. (2015), "Performance Evaluation of Microservices
Architectures using Containers", IEEE NCA, P. 93–100. DOI: https://doi.org/10.1109/NCA.2015.49

6. Turin, G., Borgarelli, A., Donetti, S., Damiani, F., Johnsen, E.B., Tapia Tarifa, S.L. (2023), "Predicting
Resource Consumption of Kubernetes Container Systems Using Resource Models", Journal of
Systems and Software, No. 203, P. 111750. DOI: https://doi.org/10.1016/j.jss.2023.111750

7. Dymora, P., Mazurek, M., Sudek, B. (2021), "Comparative Analysis of Selected Open-Source
Solutions for Traffic Balancing in Server Infrastructures Providing WWW Service", Energies,
No. 14(22), P. 7719. DOI: https://doi.org/10.3390/en14227719

8. Sokolov, A. (2024), "Application of Queueing Theory to Investigation of HaProxy Load Balancer
Performance Characteristics", DCCN 2023, CCIS 2129, Springer, P. 89–100.
DOI: https://doi.org/10.1007/978-3-031-61835-2_7

9. Rathi, G., Amin, S. (2024), "Performance Analysis of Different Ingress Controllers Within the
Kubernetes Cluster", IEEE ICITEICS 2024.

 DOI: http://dx.doi.org/10.1109/ICITEICS61368.2024.10625280
10. Khamdani, A.R., Muslikh, A.R., Affandi, A.S. (2025), "Comparative Analysis of Performance and

Efficiency of Load Balancing Algorithms on Ingress Controller", Jurnal Teknik Informatika, Vol. 6,
No. 1, P. 453–468. DOI: https://doi.org/10.52436/1.jutif.2025.6.1.4040

11. Nguyen, N., Kim, T. (2020), "Toward Highly Scalable Load Balancing in Kubernetes Clusters", IEEE
Communications Magazine, No. 58(7), P. 78–83. DOI: https://doi.org/10.1109/MCOM.001.1900660

12. Zhu, X., She, G., Xue, B., et al. (2023), "Dissecting Overheads of Service Mesh Sidecars", ACM SoCC
'23: Proceedings of the 2023 ACM Symposium on Cloud Computing, P. 142–157.
DOI: https://doi.org/10.1145/3620678.3624652

13. Elkhatib, Y., Salmon, B., Harkous, H., et al. (2023), "An Evaluation of Service Mesh Frameworks for
Edge Systems", EdgeSys '23: Proceedings of the 6th International Workshop on Edge Systems,
Analytics and Networking, P. 19–24. DOI: https://doi.org/10.1145/3578354.3592867

14. Bremler-Barr, A., Lavi, O., Naor, Y., Rampal, S., Tavori, J. (2024), "Performance Comparison of
Service Mesh Frameworks: the mTLS Test Case", arXiv (Tech. Report).
DOI: https://doi.org/10.48550/arXiv.2411.02267

https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1016/j.jss.2023.111906
https://doi.org/10.1145/3460345
https://doi.org/10.1145/2890784
https://doi.org/10.1109/NCA.2015.49
https://doi.org/10.1016/j.jss.2023.111750
https://doi.org/10.3390/en14227719
https://doi.org/10.1007/978-3-031-61835-2_7
http://dx.doi.org/10.1109/ICITEICS61368.2024.10625280
https://doi.org/10.52436/1.jutif.2025.6.1.4040
https://doi.org/10.1109/MCOM.001.1900660
https://doi.org/10.1145/3620678.3624652
https://doi.org/10.1145/3578354.3592867
https://doi.org/10.48550/arXiv.2411.02267

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

198

15. Larsson, L., Tärneberg, W., Klein, C., Elmroth, E., Kihl, M. (2020), "Impact of etcd Deployment on
Kubernetes, Istio, and Application Performance", Software: Practice and Experience.
DOI: https://doi.org/10.1002/spe.2885

16. Singh, N., Tanwar, S., Gupta, R., Kumar, N. (2023), "Load balancing and service discovery using
Docker Swarm for big data applications in microservice architecture", Journal of Cloud Computing,
No. 12, P. 77. DOI: https://doi.org/10.1186/s13677-022-00358-7

17. Jani, Y. (2024), "Unified Monitoring for Microservices: Implementing Prometheus and Grafana for
Scalable Solutions", Journal of Artificial Intelligence, Machine Learning and Data Science, No. 2(1),
P. 848–852. DOI: http://dx.doi.org/10.51219/JAIMLD/yash-jani/206

18. Elrad, M.D. (2025), "Prometheus & Grafana: A Metrics-focused Monitoring Stack", Journal of
Computer Allied Intelligence, No. 3(3), P. 28–39. DOI: https://doi.org/10.69996/jcai.2025015

Received (Надійшла) 07.11.2025
Accepted for publication (Прийнята до друку) 03.12.2025

Publication date (Дата публікації) 28.12.2025

About the Authors / Відомості про авторів

Glavchev Maksym – PhD (Economic Sciences), Associate Professor, National Technical University
"Kharkiv Polytechnic Institute", Professor at the Department of Computer Engineering and Programming,
Kharkiv, Ukraine; e-mail: Maksym.Glavchev@khpi.edu.ua; ORCID ID: https://orcid.org/0000-0001-
9670-9118

Hlavchev Dmytro – PhD, National Technical University "Kharkiv Polytechnic Institute", Associate
Professor at the Department of Computer Engineering and Programming, Kharkiv, Ukraine;
e-mail: Dmytro.Hlavchev@khpi.edu.ua; ORCID ID: https://orcid.org/0000-0003-4248-4819

Panchenko Volodymyr – National Technical University "Kharkiv Polytechnic Institute", Senior
Lecturer at the Department of Computer Engineering and Programming, Kharkiv, Ukraine;
e-mail: Volodymyr.Panchenko@khpi.edu.ua; ORCID ID: https://orcid.org/0000-0003-3364-3398

Главчев Максим Ігорович – кандидат економічних наук, доцент, Національний технічний

університет "Харківський політехнічний інститут", професор кафедри "Комп’ютерна інженерія та
програмування", Харків, Україна.

Главчев Дмитро Максимович – доктор філософії, Національний технічний університет
"Харківський політехнічний інститут", доцент кафедри "Комп’ютерна інженерія та
програмування", Харків, Україна.

Панченко Володимир Іванович – Національний технічний університет "Харківський
політехнічний інститут", старший викладач кафедри "Комп’ютерна інженерія та програмування",
Харків, Україна.

https://doi.org/10.1002/spe.2885
https://doi.org/10.1186/s13677-022-00358-7
http://dx.doi.org/10.51219/JAIMLD/yash-jani/206
https://doi.org/10.69996/jcai.2025015
https://orcid.org/0000-0001-9670-9118
https://orcid.org/0000-0001-9670-9118
https://orcid.org/0000-0003-4248-4819
https://orcid.org/0000-0003-3364-3398

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

199

ДОСЛІДЖЕННЯ ЕФЕКТИВНОСТІ ВПРОВАДЖЕННЯ
OPEN-SOURCE-РІШЕНЬ ДЛЯ МОНІТОРИНГУ Й БАЛАНСУВАННЯ

НАВАНТАЖЕННЯ В МІКРОСЕРВІСНИХ ЗАСТОСУНКАХ

Предметом дослідження є open-source-рішення та їх упровадження для моніторингу й балансування
навантаження в мікросервісних застосунках, що функціонують у спеціалізованих комп’ютерних
системах. Дослідження охоплює широкий спектр інструментів, зокрема системи збору метрик,
централізованого логування й розподіленого трасування запитів. Актуальність роботи зумовлена
постійним зростанням складності розподілених архітектур і критичною потребою в ефективному
контролі продуктивності (спостережуваності) й стабільному розподілі трафіку. Мета роботи –
комплексне емпіричне оцінювання й порівняння ключових open-source-інструментів моніторингу
й балансування навантаження, зокрема Prometheus / Grafana (для метрик), ELK stack (для логів),
HAProxy, Nginx, Traefik (балансувальники), а також Istio та Linkerd (service mesh), з метою розроблення
практичних рекомендацій щодо проєктування й експлуатації мікросервісних систем.
Завдання: проаналізувати поширені open-source-інструменти; визначити критерії їх ефективності;
створити тестове середовище на базі Kubernetes; провести серію навантажувальних тестів з різними
конфігураціями; кількісно оцінити ключові показники продуктивності, зокрема затримку, пропускну
здатність і використання ресурсів. Методи дослідження. Застосовано системний аналіз, емпіричне
моделювання та бенчмаркінг. Для об’єктивного порівняння впроваджено методи навантажувального
тестування (baseline та стрес-сценарії) в кластері Kubernetes. Ключові критерії оцінювання: затримка
оброблення запитів, пропускна здатність і ресурсні накладні витрати самих інструментів.
Результати підтверджують, що open-source-рішення здатні забезпечити високий рівень
спостережуваності та ефективне балансування навантаження в спеціалізованих комп’ютерних системах,
водночас залишаючись економічно вигідною альтернативою комерційним продуктам. Дослідження
виявило переваги й недоліки кожного з інструментів, що дає змогу обґрунтовано підходити до їх вибору
залежно від специфічних вимог проєкту. Висновки: підтверджено здатність open-source-інструментів
ефективно забезпечувати спостережуваність і управління навантаженням у спеціалізованих
комп’ютерних системах і водночас залишатися економічно вигідною альтернативою комерційним
продуктам. Сформульовані висновки дають змогу розробити практичні рекомендації для проєктування
й експлуатації мікросервісних застосунків із зосередженням на стабільності та продуктивності.
Результати дослідження можуть бути впроваджені в прийнятті архітектурних рішень для розподілених
систем різного масштабу.

Ключові слова: open-source; service mesh; мікросервіс; моніторинг; балансування навантаження;
спеціалізована комп’ютерна система.

Bibliographic descriptions / Бібліографічні описи

Glavchev, M., Hlavchev, D., Panchenko, V. (2025), "Evaluating the effectiveness of open-source
solutions for monitoring and load balancing in microservice applications", Management Information
Systems and Devises, No. 4 (187), P. 182–199. DOI: https://doi.org/10.30837/0135-1710.2025.187.182

Главчев М. І., Главчев Д. М., Панченко В. І. Дослідження ефективності впровадження
open-source-рішень для моніторингу й балансування навантаження в мікросервісних застосунках.
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187). С. 182–199.
DOI: https://doi.org/10.30837/0135-1710.2025.187.182

	Bibliographic descriptions / Бібліографічні описи

