

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

 © Shmatko O., Gamayun I., Kolomiitsev O., 2025

156

UDC 004.8:004.4:005.94 DOI: https://doi.org/10.30837/0135-1710.2025.187.156

O. Shmatko, I. Gamayun, O. Kolomiitsev

HYBRID MACHINE LEARNING MODEL FOR CLASSIFYING
SOFTWARE BUGS IN SAAS CLOUD APPLICATIONS

In modern cloud computing environments, ensuring the stability and reliability of software applications is one of the
key factors for the effective operation of information systems. A significant portion of failures in such systems are
caused by software errors (bugs), which complicate operation and reduce service productivity. Traditional methods
of manual analysis of bug reports are labor-intensive, so it is necessary to develop intelligent approaches
to automated classification and prioritization of bugs using machine learning methods. The purpose of the article
is to improve the accuracy of classifying types of software bugs in cloud applications. Research objectives:
to develop a complete pipeline for automated processing of bug reports, covering all stages from preliminary cleaning
to classification model building. The methodological basis of the study is the use of natural language processing
(NLP) methods, the SMOTE technique for sample balancing, classical machine learning algorithms, and the
RandomizedSearchCV hyperparameter optimization procedure. The quality of the models is evaluated based on
standard classification metrics such as accuracy, precision, recall, and F1-score, which provides a comprehensive
and objective analysis of the results. Research results. A hybrid model for automated bug classification has been
developed, covering the stages of data collection, preprocessing, vectorization, and modeling. A comparative analysis
of the accuracy of four machine learning algorithms – naive Bayes classifier, decision tree, random forest, and logistic
regression – was performed using different vectorization methods (Bag-of-Words, TF-IDF, Word2Vec). To improve
classification accuracy, the SMOTE data balancing technique was applied. Experimental studies on
a real data set from a cloud environment showed that the Random Forest model achieved the highest accuracy
rates – up to 91.7 %. The results confirm the effectiveness of integrating machine learning algorithms into the
processes of analysis and support of software products in cloud infrastructures. Conclusions. The proposed approach
improves the accuracy of bug classification in cloud computing systems and can be used in monitoring systems,
DevOps platforms, and automated testing tools. The research results provide a basis for the further development of
intelligent tools for predicting and prioritizing software defects.

Keywords: bug classification; cloud computing; machine learning; TF-IDF; Word2Vec; random forest;
test automation.

Introduction

Problem statement. In today's digital transformation environment, cloud computing models

play a key role in ensuring the availability, scalability, and efficiency of software services.
One of the most common cloud paradigms is Software as a Service (SaaS), which provides users
with ready-to-use software applications via the Internet.

Unlike traditional approaches to software deployment, the SaaS model eliminates
the need to install programs on local devices, as the provider is fully responsible
for the development, deployment, updating, and support of the application. Users get access to the
system's functionality according to the terms of the Service Level Agreement (SLA),
which can be regulated by model subscriptions, hourly or volume-based payments. Today,
SaaS solutions are widely used in email, financial services, human resource management,
and other industries.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

157

The growing popularity of SaaS is leading to an exponential increase in the number of users and
the expansion of the functionality of such systems. However, the intensive use of cloud applications
is inevitably accompanied by the emergence of a significant number of software defects that affect
the quality and stability of services. Bugs in SaaS environments can cause delays in business processes,
reduced productivity, a poor user experience, and direct financial losses. In these conditions, the
effectiveness of technical support depends on the speed and accuracy of bug detection, classification,
and prioritization. Manual processing of bug reports is complex, time-consuming, and resource-
intensive, which is why automating bug classification processes is particularly important.

Machine learning methods capable of analyzing large data sets and identifying hidden patterns
in text descriptions of bugs are also of considerable scientific interest. The use of machine learning
algorithms in the field of bug report processing opens up new opportunities to improve the
accuracy of error type identification, reduce the time required to fix them, and reduce the workload
on the development team and system administrators. With the rapid growth in the number of cloud
applications, the need for such approaches is becoming critically important, as the correct
classification and prioritization of defects directly affect the stability and reliability of services.

Automated classification of software bugs in SaaS systems using machine learning methods
is a promising area of research aimed at improving the efficiency of technical support, the accuracy
of defect identification, and the optimization of quality assurance processes. Research in this area
provides a scientific basis for the development of intelligent tools for analysis, forecasting, and
decision support in cloud infrastructures.

Analysis of recent research and publications. In today's environment of increasing software
system complexity, software testing plays a key role in the verification and validation (V&V)
process, ensuring the correctness, stability, and long-term reliability of the systems being
developed [4]. With the increasing criticality of software systems, particularly in the fields of
security, medicine, transport, etc., the costs associated with their analysis, testing, and quality
assurance are also rising significantly. This, in turn, creates demand for effective methods of defect
prediction using intelligent technologies, in particular machine learning (ML) algorithms, which
enable prediction, optimization, and automatic learning with minimal human intervention.

In the context of research aimed at automating the detection of bugs in SaaS applications,
particular attention is drawn to works devoted to the classification of bugs based on bug reports
and the determination of their priority. Researchers point to the availability of both ready-made
tools for code analysis and bug detection, as well as models capable of prioritizing these bugs
based on historical data [5]. In [6], the idea of using machine learning to automate manual
processes, particularly in the area of bug prioritization, is put forward. The authors note that based
on historical bug reports, models can learn to identify patterns and make predictions about the
importance of new bugs. This approach improves classification accuracy and reduces the burden
on technical support.

A similar approach is supported in [7], which emphasizes that the increasing complexity of
software systems significantly complicates manual bug detection, making it slow and prone to
human bug. The use of ML models in such conditions not only improves the quality of software
but also reduces the cost of its maintenance. This is especially true for secure or mission-critical
systems, where even minor bugs can have serious consequences.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

158

Another promising area of research is the use of ensemble methods in bug triaging – the
process of automatically determining which developer should be assigned a particular bug.
Work [8] demonstrates that ensemble classifiers (which combine several models to achieve better
results) outperform classical machine learning algorithms in bug assignment tasks. This indicates
the possibility of significantly improving the efficiency of the bug handling process and reducing
delays in their resolution.

In [9], an innovative approach to bug prioritization based on emotional analysis of bug
descriptions was proposed. The authors collected data from open sources, performed natural
language processing (NLP), extracted emotional words from the text, and based on this, formed a
feature vector for the ML model. This approach increased classification accuracy (F1 score) by
more than 6 %. The use of emotional analysis allows for better consideration of subjective user
assessments, which is especially important in interface-oriented or client systems.

A significant problem in bug classification tasks is class imbalance, where most examples
belong to insignificant classes, and critical bugs occur much less frequently. In such cases, most
models tend to overfit on frequent classes, which reduces the effectiveness of detecting truly
important bugs. The paper [10] considers an approach that involves building an ensemble classifier
using various oversampling methods to improve the representation of small classes. The results of
the study showed that combining classification and sample balancing reduces the number of false
negatives and improves the accuracy of defect component recognition.

Our study proposes an approach to automating the processes of classification and
prioritization of software bugs in SaaS applications. With the growth in the number of users and
the increase in the functional load on cloud services, the probability of defects occurring is steadily
increasing. These bugs can significantly degrade the quality of the user experience, cause delays
in business processes, and create additional difficulties in maintaining such systems. Therefore, an
urgent task is to develop machine learning models capable of automatically processing bug logs,
identifying defect types, and prioritizing them to optimize the work of development and technical
support teams.

The goal of this work is to improve the efficiency of classifying types of software bugs in
cloud computing environments based on a hybrid approach to software bug classification using
NLP, vectorization, and balanced machine learning methods.

Main material

The proposed design solution for classifying bugs in cloud computing applications uses
machine learning methods to automate and improve the detection and prioritization of software
defects. This approach takes into account the inherent complexity and scaling challenges in cloud
environments, where bugs can manifest in distributed systems, virtualized resources, and
heterogeneous infrastructures. The methodology follows a structured pipeline covering data
collection, preprocessing, feature engineering, model selection and training, evaluation, and
deployment. Although presented as a high-level framework, the solution is adaptable to specific
contextual constraints, as shown in Figure 1.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

159

The initial phase involves collecting data from a variety of sources relevant
to cloud computing applications. Bug data is aggregated from bug tracking systems
(e.g., Jira or Bugzilla), official repositories, user forums, and historical logs. This multifaceted
approach to sources provides a comprehensive data set that reflects real-world bug manifestations,
including those arising from resource contention, network latency, or configuration bugs in cloud-
native architectures.

After collection, the data is preprocessed to remove noise and inconsistencies. Unnecessary
artifacts, such as duplicate records or discussions unrelated to bugs, are removed. Missing values
are imputed using methods such as replacement by the mean or k-nearest neighbors, while text
data is normalized, tokenized, and stop words are removed. This step transforms the raw input data
into a structured format suitable for machine learning analysis.

Fig. 1. Algorithm of the proposed bug classification conveyor in cloud computing applications

After cleaning and transforming the data, a vector representation is formed that is suitable for
further processing by machine learning algorithms. This study considered three popular
vectorization methods: Bag of Words (BoW), TF-IDF, and Word2Vec.

1. Bag of Words (BoW). The Bag of Words (BoW) method is a basic statistical method that

represents text as a vector of word frequencies. Let us have a corpus of documents containing
a dictionary { }1 2, ,..., nV w w w= . Each document is represented as a vector:

 () () ()1 2, , , , , , ,d nv f w d f w d f w d= …  


where (),if w d – frequency of a word iw in a document d . The method does not take into account

word order and semantic relationships, but it is effective with a sufficient amount of data.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

160

2. TF-IDF (Term Frequency – Inverse Document Frequency). The TF-IDF method improves
BoW by weighting word frequency based on how unique the term is within the entire corpus.
For a word t in a document d , the TF-IDF formula is calculated as follows:

 () () ()TF-IDF , , TF , IDF , ,t d D t d t D= ⋅

where () ()()TF , log 1 , ,t d f t d= +

() { }
IDF , log ,

:
Nt D

d D t d
 

=   ∈ ∈ ∣ ∣

(),f t d – number of occurrences of the term t in the document d ,

N – total number of documents in the corpus D ,
{ }:d D t d∈ ∈∣ ∣ – number of documents containing the term t .

TF-IDF allows you to reduce the weight of common terms and increase the significance
of rare, specific words.

3. Word2Vec. Unlike statistical methods, Word2Vec is a deep learning model that creates
dense vector representations of words, taking into account the context of their use.
Developed by Google in 2013, the model has two main architectures: Continuous Bag
of Words (CBOW) and Skip-Gram.

Let tw is the trarget word, { }1 1,..., , ,...,t n t t t nC w w w w− − + += — the context. In CBOW, the task

is to predict tw based on the context:

 ()
1

,
wt

i

v h

t V v h
i

eP w C
e

⋅

⋅

=

=
∑∣∣

where h – average vector representation of words from context; iv – vector representation

of a word i .
In Skip-gram, on the contrary, the model learns to predict contextual words based on

a given word.
In our study, we used the CBOW algorithm with the following parameters:
− min_count = 5 — words that occur less than 5 times are ignored;
− size = 50 — the dimension of the vector space;
− workers = 4 — the number of threads for training.
As part of the study, four classic machine learning algorithms were used to solve the problem

of multi-class classification of error types in cloud computing applications: naive Bayes classifier,
decision tree, random forest, and logistic regression.

Each of these methods has its own advantages, limitations, and peculiarities of use in natural
language processing tasks.

1. Naive Bayes classifier. This method is based on Bayes' theorem with the assumption
of conditional independence of features. In text classification tasks, it is considered simple, fast,
and effective.

Its probability model is determined by the formula:

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

161

()
() ()
()

1
1 2

1 2

, , , ,
, , ,

n
ii

n
n

P y P x y
P yx x x

P x x x
=… =
…

∏

where y – class, ix – signs (e.g., words), and ()iP x y∣ – probability of a sign ix appearing given

the class y .
2. Decision Tree. Decision trees are algorithms that build a hierarchical model where each

internal node branch corresponds to a condition based on a specific feature, and leaf nodes
correspond to classes. The main goal is to minimize entropy or the Gini coefficient during
partitioning. Formally, entropy is used for:

 () 2
1

log ,
n

i i
i

H D p p
=

= −∑

where ip – proportion of class i elements of D data sets.

Trees are interpretive but prone to overfitting on noisy data.
3. Random Forest. Random Forest is an ensemble method that combines a set of decision trees

created on random subsets of data and features. Each tree votes for a class, and the final prediction
is determined by majority vote. The method reduces model variance, improving generalization:

 () () (){ }1 2mode , , , ,ˆ ky h x h x h x= …

where ()ih x – forecast of the i -th tree.

Random forest demonstrates high accuracy, especially on complex and large-scale data,
making it effective for text classification.

4. Logistic Regression. This linear method is widely used for classification tasks due to its
mathematical rigor and stability. Softmax regression is typically used for multi-class classification.
The probability of belonging to a class k is determined by:

 ()
1

,
T
k

T
j

x

K x

j

eP y kx
e

β

β

=

= =
∑

where kβ – vector of coefficients for class k , x – feature vector.

Optimization is performed by maximizing the logarithmic likelihood function.
After the model is defined, it is trained on the prepared data set. The training process includes

sample balancing to avoid bias towards the dominant class, cross-validation to evaluate the model's
generalization ability, and selection of optimal hyperparameters. The result is
a classification model that can automatically recognize bug categories based on the textual and
structural features of the bug report.

During the validation stage, the model is evaluated using a separate test dataset.
Its effectiveness is assessed using standard classification quality metrics such as accuracy,
precision, recall, and F1-score. Each of these metrics allows us to evaluate different aspects of the
model's performance: its ability to correctly classify objects, avoid false positives and false
negatives, and the overall balance between precision and recall.

After passing the evaluation stage, the model is deployed in a cloud environment.
Its integration into real systems allows you to automate the process of processing new bug

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

162

reports, classify them in real time, and route them to the responsible executors. This, in turn, helps
to reduce response time, increase the efficiency of technical support, and generally optimize the
software maintenance process.

High-quality and meaningful data is the foundation of modern data science, as the
effectiveness and accuracy of a machine learning model directly depend on the quality
of the source data set. That is why the first stage of implementing the proposed
approach was data processing, which included collection, cleaning, visualization,
and exploratory data analysis (EDA).

Figure 2 shows a deployment diagram that reflects the architecture of the bug classification
system in the SaaS cloud environment.

Fig. 2. Algorithm of the proposed bug classification conveyor in cloud computing applications

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

163

The architecture of the proposed automated software bug classification system in cloud SaaS
applications consists of a number of interconnected components located in the cloud infrastructure
and designed to ensure a complete bug report processing cycle – from the moment the data is
received to the formation of a classification conclusion. Each component performs clearly defined
functions, ensuring scalability, modularity, and the ability to flexibly integrate with existing
DevOps services and support systems.

1. Cloud Platform. The main environment in which all server modules of the classification
system are deployed. Provides scalability, network interaction, and computing resources.

2. Backend Server. Hosts software components that process requests, classify bugs, and
coordinate interaction between other modules:

− REST API Service – an interface for interaction between users, external services, and
the classification system. Accepts bug reports and returns classification results.

− Bug Classifier Module – the main classification module, which runs a trained machine
learning model (Random Forest + TF-IDF).

− Preprocessing Module – a component for cleaning and normalizing the text of bug
reports before vectorization.

− Vectorization Module – implements Bag-of-Words, TF-IDF, and Word2Vec methods to
convert text into numerical vectors.

− Data Balancer (SMOTE) – used during model training to eliminate class imbalance.
3. Data storage (Database / Object Storage). Used to store permanent data and models:
− Dataset Repository – storage of bug reports, dictionaries, and metadata.
− Logs Storage – storage of system logs, classification history, and technical events.
− Model Storage – file or object storage of a trained ML model available to

the classification module.
4. ML Training Environment (Compute Node). A separate powerful computing environment

designed for training models:
– Training Script (Python + scikit-learn) – scripts for training classifiers.
– Hyperparameter Tuning (RandomizedSearchCV) – a module for optimizing

hyperparameters to achieve the best accuracy.
5. Development System (Jira / Bugzilla / CI/CD). An external data source that automatically

transfers bug reports to the classification system or receives analysis results.
– Bug Tracking System – a bug management tool that integrates with

the system's REST API.
6. Client device (Web/CLI Tool). A component through which the user interacts

with the system:
– User Interface – a web interface or command interface that allows you to send bug reports

and view classification results.
This study uses a publicly available dataset published on the Kaggle platform in 2020 [11].

This is because most similar data is either closed or extremely labor-intensive to collect
independently.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

164

The dataset is an example of a web-based issue tracker, specifically in the field of Python
development.

Its structure is presented in Table 1, which contains a description of the attributes used for
further construction of bug classification models.

Table 1. Data set characteristics

№ Attribute Description
1 Unnamed The column contains a unique identifier for each record
2 Title The column contains the full text of the bug in the form of a

record
3 Type Target variable (label); indicates the type of bug

The dataset contains 5,300 records and three main attributes: a unique identifier (Unnamed),

a text description of the bug (title), and a target variable – the error type (type). A total of six
bug categories have been identified: enhancement, security, compilation bug, resource utilization,
performance, and crash.

An example description is shown in Figure 3. A distinctive feature of this data is that bug
names often contain technical codes (e.g., SyntaxError, ImportError), which significantly
complicates the classification task, since the language is not natural in the usual sense.

Fig. 3. Example of bug description

The distribution of error types is analyzed using graphical visualization. Figure 4 shows

a histogram demonstrating the number of records for each error type. The most common bugs are

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

165

those related to performance, while the least common are those related to resource utilization.
Since this is a multi-class classification, the issue of class balancing is not critical. Instead, it

is advisable to use a cross-validation method, which avoids overfitting the model.
This approach involves dividing the entire dataset into several parts (folds) and testing the

model step by step on each subset, which significantly increases the accuracy and stability
of the results.

Fig. 4. Distribution of bugs by type

The next step was to analyze the frequency of terms in bug descriptions. One of the simplest
but most informative approaches is to use unigrams – single words that are considered
independently of each other. Figure 5 shows a graph with the ten most frequently used words,
among which the word module occurs most often, while python occurs least often. Most of them
are typical for bugs in Python repositories (e.g., file, function, code).

Fig. 5. Most frequently used words in bug descriptions

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

166

Preprocessing is a key step in the process of extracting knowledge from data, as it allows raw,
unstructured, or partially structured information to be converted into a machine-readable format.
Real-world datasets are typically characterized by incompleteness, redundancy, instability, and
errors. Therefore, the application of high-quality preprocessing procedures is
a prerequisite for building a reliable and generalizable machine learning model.

Within the scope of this study, preprocessing was implemented in several stages, which can
be broadly divided into two main phases: working with raw data and basic preprocessing
with data labeling.

After completing the cleaning stages, the data was ready to be transformed into a format
suitable for modeling. In particular, the type column, which is a categorical variable, needed to be
converted to a numerical format.

To do this, we used the Label Encoding method, which replaces each unique category with a
corresponding number. As a result, all six error classes received unique numerical labels.
The scheme of encoded values is shown in Figure 6.

Fig. 6. Label encoding for multi-class classification

An equally important challenge in classification tasks is the problem of class imbalance, when
the number of records for different categories is uneven. Although the dataset under study is multi-
class, there is also a significant imbalance in the number of examples for
each type of error.

To solve this problem, a combination of random oversampling and the SMOTE (Synthetic
Minority Oversampling Technique) method was used. SMOTE is an algorithm for generating
synthetic examples for minority classes by interpolating between existing points in the feature
space. This approach not only balances the distribution of classes, but also reduces the likelihood
of overfitting, which often occurs when simply duplicating minority examples.

As a result of balancing, the distribution of data across classes was evened out. This is clearly
demonstrated in Figure 7, which shows the final state of the dataset with evenly represented
classes.

Within the scope of this study, four popular machine learning algorithms were selected to
solve the problem of multi-class classification of error types in cloud SaaS applications:

– Naive Bayes classifier;
– Decision Tree;
– Random Forest;
– logistic regression.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

167

In order to improve the efficiency of modeling and conduct a more in-depth analysis of the
impact of different approaches to text feature representation, a series of experiments were
conducted, which included the use of various vectorization methods, parametric optimization, and
comparative evaluation of models.

Fig. 7. Final state of the dataset with evenly represented classes

Seven key experiments were implemented, covering the following components:
– Three methods of text vectorization: Bag-of-Words (BoW), TF-IDF, and Word2Vec –

a modern method of vector representation of words based on a neural network.
– Optimization of model hyperparameters for BoW and TF-IDF using the Randomized

SearchCV method, which allows you to efficiently find the best parameter configurations.
– Comprehensive comparative analysis of model performance by metrics: accuracy, recall,

precision, and weighted average (F1-score).

The formulas for calculating key metrics are presented below:

TP TNAccuracy
TP TN FP FN

+
=

+ + +
;

TPPrecision
TP FP

=
+

;

 TPRecall
TP FN

=
+

;

1 2 Precision RecallF
Precision Recall

×
= ×

+
,

where TP, TN, FP, FN are true positive, true negative, false positive, and false negative
predictions, respectively.

The dataset was divided into training and test samples in an 80/20 ratio, where 80 % of the
records were used to train the model and 20 % to evaluate its generalization ability.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

168

To ensure the reproducibility of the experiments, a fixed parameter random_state = 42 was
used, which guarantees the same division of the dataset each time it is run.

Each of the four classification algorithms was trained based on three different types
of vectorization, which made it possible to evaluate how the method of text representation affects
the performance of the model.

The results of the study confirm that dataset balancing combined with model hyperparameter
optimization are critical factors for achieving high classification accuracy.
Four machine learning algorithms were used in the experiments: naive Bayes classifier, decision
tree, random forest, and logistic regression – to classify bugs on both balanced
and unbalanced datasets.

One of the key classifiers used in the study is Multinomial Naive Bayes, which is widely used
for text classification. It is based on Bayes' theorem, assuming conditional independence of
features. Since this is a multi-class task, the MultinomialNB implementation was obtained from
the scikit-learn library and used in all experimental scenarios.

All experimental results for the Naive Bayes model are shown in Figures 8 and 9.

Fig. 8. Comparison of model accuracy for an imbalanced sample

The Naive Bayes model demonstrates different effectiveness depending on the vectorization
method and the state of the sample (balanced or unbalanced). The best result was obtained for
TF-IDF with tuned hyperparameters (PT-TFIDF).

The model achieved 97.14 % accuracy on the training set and 88.18 % on the test set, which
is the highest result among all configurations.

Word2Vec vectorization showed low performance on the test data, indicating insufficient
representativeness of semantic spatial features in this task.

Balancing the dataset significantly improved the classifier's performance: a comparison of
experiments 1 and 2 shows a 15–20 % jump in performance.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

169

Thus, hyperparameter tuning and correct sample preparation are critical factors for achieving
high accuracy in bug report classification tasks.

Fig. 9. Comparison of model accuracy for a balanced sample

The study also generated a Classification Report for the Naive Bayes model with the best

parameters (BOW-tuned). Based on the Classification Report, a diagram was constructed
(Fig. 10), which details the Precision, Recall, and F1-measure values for each error category.

Fig. 10. Comparison of metrics for each class

Decision trees belong to the class of interpreted machine learning models and are widely used

for prediction and classification tasks due to their simplicity, high learning speed, and ability to
work with nonlinear dependencies. The algorithm for constructing a decision tree is based on
iterative division of the feature space by selecting splitting criteria that minimize uncertainty

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

170

(impurity) in data subsets. This approach allows building a hierarchical structure of rules,
according to which the model matches new inputs with the corresponding classes.

In this study, the DecisionTreeClassifier algorithm from the scikit-learn library was used to
classify software errors. After loading the data, preprocessing, and vectorization, the model was
trained on the training set and tested on the deferred part of the data. To ensure a correct quality
assessment, all experimental scenarios similar to the previous Naive Bayes analysis were also
applied to this model.

The generalized results are presented in Figures 11, 12.

Fig. 11. Comparison of model accuracy for imbalanced samples

Fig. 12. Comparison of model accuracy for balanced samples

The Decision Tree model achieves maximum accuracy on the training set in almost all

experiments, which is typical for decision trees, as they are prone to overfitting.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

171

This is especially noticeable when training on an unbalanced dataset, where accuracy scores
on the test sample are significantly lower – from 43 % to 65 %, depending on the vectorization
method.

After applying sample balancing, the model's performance improved significantly:
– test accuracy increased to 86–88 % in configurations with BOW and TF-IDF,
– results for Word2Vec remained low (≈43 %), which is consistent with previous

observations and indicates the ineffectiveness of Word2Vec in this context.
The optimal hyperparameter values were selected for the model:
– criterion = "gini"
– max_depth = 54
– min_samples_leaf = 4
– min_samples_split = 95
This setting partially reduced model overfitting, although Decision Tree remains inherently

sensitive to noise and data complexity.
The results showed that after optimizing the parameters, the accuracy of the BOW and

TF-IDF-based models is practically identical. The slight advantage of TF-IDF (up to 87.79 % test
accuracy) is due to the fact that this method better takes into account the weight of rare terms,
which is critical in text tasks.

The classification report was used for a detailed analysis of the model's behavior (Fig. 13):
– the largest number of misclassifications occurs in classes with similar text features;
– the F1-measure for individual categories varies significantly, confirming the sensitivity

of the decision tree to data distribution.

Fig. 13. Comparison of metrics for each class

Within the scope of this study, the RandomForestClassifier implementation from
the scikit-learn library was used. After loading the vectorized data, the model was trained on the
training sample and evaluated on the test sample.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

172

All experimental scenarios – for different vectorization methods and with/without
hyperparameter optimization – were tested sequentially. The generalized results are shown
in Figures 14, 15.

Fig. 14. Comparison of model accuracy for imbalanced samples

Fig. 15. Comparison of model accuracy for balanced samples

The results show that Random Forest demonstrates significantly better classification quality
compared to decision trees and Naive Bayes in most settings. In particular, it can be seen that:

1. The best result was achieved for TF-IDF with tuned hyperparameters (PT-TFIDF)
– Train accuracy: 100 %;
– Test accuracy: 91.73 % – the highest score among all models in the study.
This confirms that Random Forest not only successfully overcomes the problem of decision

tree overfitting, but also makes the most complete use of the information provided
by TF-IDF vectorization.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

173

2. Impact of sample balancing
A comparison of the results between part 1 (Imbalanced) and part 2 (Balance) shows:
– the accuracy gain on the test is between 20 and 30 % for BOW and TF-IDF;
– Word2Vec accuracy remains low (~58 % regardless of balance), indicating its limited

effectiveness for classifying short text descriptions of errors in this dataset.
3. Selected hyperparameters
The following values were used to achieve optimal productivity:
– criterion = "entropy"
– max_depth = 79
– min_samples_leaf = 1
– min_samples_split = 79
The combination of a large tree depth and a split value of 79 ensured a balance between tree

variability and overall ensemble consistency.
According to the classification reports obtained, the precision for all classes varies

from 73 % to 100 % (Fig. 16), which indicates the model's high ability to correctly assign most
samples to the appropriate categories.

The results for classes 4 and 5 are particularly indicative, where the model achieved 100 %
recall, i.e., it was able to detect all cases that actually belong to these classes. Such indicators are
considered excellent in the tasks of automated classification of text descriptions of errors.

Fig. 16. Comparison of metrics for each class

Analysis of the F1-measure confirms that the generalized model is well balanced and shows
no signs of overfitting or underfitting. F1-scores remain consistently high for most classes,
indicating an effective combination of accuracy and completeness. It is important to note that all
classes contributed approximately equally to the learning process, which ensured increased model
stability and its ability to work on various types of data.

In this study, the LogisticRegression implementation was imported from the
sklearn.linear_model library. The model was trained on pre-processed and vectorized data, after

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

174

which it was evaluated on a test set. All experimental scenarios – different vectorizations,
hyperparameter optimization, and balanced/unbalanced sample analysis – were applied
to logistic regression in the same way as to other classifiers.

Further analysis of the results allowed us to evaluate how well logistic regression can cope
with the task of classifying software bug descriptions and how its productivity compares
to Naive Bayes, Decision Tree, and Random Forest.

Within the scope of the experiments, logistic regression was tested under similar conditions
as other classifiers – with different vectorization methods (BOW, TF-IDF, Word2Vec), as well as
with tuned hyperparameters for BOW and TF-IDF. The generalized results of the model
are shown in Figures 17, 18.

Fig. 17. Comparison of model accuracy for imbalanced samples

Fig. 18. Comparison of model accuracy for balanced samples

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

175

Logistic regression demonstrates lower productivity compared to other classifiers,
in particular Random Forest and Naive Bayes. The main observations are as follows:

1. Relatively low accuracy on an unbalanced dataset
The model showed test accuracy in the range of 46–66 % for most vectorization methods, and

even below 50 % for Word2Vec, indicating the difficulties of logistic regression in conditions of
uneven class distribution and high variability of text descriptions.

2. Improved results after data balancing
For a balanced dataset, the productivity of logistic regression improved:
The best values were obtained for PT–BOW, where the test accuracy was 88.27 % and the

training accuracy was 93.37 %.
This indicates that logistic regression is sensitive to class imbalance and can work much more

effectively after preliminary sample correction.
3. Low efficiency of Word2Vec
Word2Vec showed the worst results among all vectorization methods: Train: 40.12 % –

Test: 42.15 %
Since logistic regression is based on linear class separation, Word2Vec semantic vectors

probably did not provide sufficient discriminatory information in this case.
4. Hyperparameters used
To improve model productivity, the following parameters were set:
– C = 10
– solver = "newton-cg"
The parameter C=10 reduces regularization, allowing the model to better adapt to the data,

while the newton-cg optimization algorithm is effective for multi-class tasks.
The obtained metric values (Fig. 19) indicate that the logistic regression model demonstrates

stable classification quality for most error categories.

Fig. 19. Comparison of metrics for each class

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

176

In particular, precision ranges from 73 % to 99 %, which indicates the model's high ability to
correctly recognize samples belonging to the corresponding classes. Classes 4 and 5 stand out in
particular, for which the model achieved 100 % recall, i.e., it was able to detect all real instances
of these categories without omissions. Such indicators are important for tasks where it is critical
to minimize the loss of important or rare defects.

The F1-measure values confirm that the model does not suffer from overfitting
or underfitting. The F1-score remains high and balanced for most classes, indicating
a harmonious balance between accuracy and completeness. The absence of significant failures
in any of the categories demonstrates that the model generalizes the data adequately and does not
reorient itself to individual classes.

It is also important to note that all classes made a relatively equal contribution to the training
of the model. This indicates that the training process was well balanced and that the preprocessing
and sample balancing methods made it possible to avoid the dominance of certain categories.
This result is critical for practical application, as it ensures stable forecasting in
a variety of real-world bug report scenarios.

Overall, logistic regression, despite its relatively lower accuracy in some configurations,
demonstrates satisfactory and interpretable results, making it useful as a base model in automated
software bug classification systems.

For a generalized comparison of the results, a Train/Test graph (Fig. 20) of the accuracy
of all models was constructed, which clearly demonstrates that Random Forest outperforms other
approaches in key metrics (see Train/Test comparison graph).

Fig. 20. Comparison of model accuracy on Train/Test data

Based on a comparison of all models, their accuracy, resistance to sample imbalance, ability
to generalize complex textual features, and effectiveness after optimization, the best model in this
study is Random Forest. It provides the highest test accuracy (91.73 %), demonstrates no
overfitting, performs consistently on all experimental sets, and provides an optimal
compromise between productivity, reliability, and the necessary flexibility. Random Forest

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

177

is recommended as the primary model for building automated bug report classification
systems in SaaS environments.

The productivity of an error classification system in cloud applications is a determining factor
in its suitability for use in real-world workloads. Since the speed of processing bug reports directly
affects the timeliness of incident response, the study evaluated two key characteristics: machine
learning model training time and inference time, i.e., the time required to classify
a single new bug report. The results are visualized in the corresponding graphs, allowing for
a clear comparison of the effectiveness of different models.

The training time analysis showed significant differences between classifiers (Figure 21).
The Naive Bayes model demonstrated the shortest training time (≈0.12 s), which is expected given
its linear nature and lack of complex parameter optimization. Logistic Regression also
demonstrated high performance, with a training time of about 0.95 s. Decision Tree, on the other
hand, was more resource-intensive (≈1.8 s), which is associated with the need to build a deep
hierarchy of nodes. The longest training time was observed for Random Forest (≈7.5 s), since the
model consists of an ensemble of trees and requires significant computational resources to form
an optimal set of decisions. Despite this, Random Forest showed the highest accuracy among all
tested models (91.7 %), which justifies its use in the presence of the appropriate infrastructure.

Fig. 21. Comparison of model training times

Inference time analysis (Figure 22) showed that all models provide almost instantaneous

classification, which is an important condition for integration into real cloud services.
The processing time for a single query was ≈0.002 s for Naive Bayes, ≈0.004 s for Logistic
Regression, and ≈0.006 s for Decision Tree, while Random Forest showed a slightly slower
inference time (≈0.015 s). However, even the maximum value remains within a few milliseconds,
which allows you to classify hundreds or thousands of bug reports per second and maintain system
operation in near real-time mode.

The system scalability assessment confirmed that the proposed architecture is effective for the
cloud environment. Using TF-IDF as the main vectorization method ensures linear scaling of
computational costs as data volumes increase and allows large text message streams
to be processed without a significant increase in preprocessing time. In addition, the Random

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

178

Forest model naturally supports horizontal scaling, since tree construction can be parallelized
across multiple computing nodes, which is especially important when processing large datasets or
during regular model retraining.

Fig. 22. Comparing of models inference time

Separating the training and inference processes also provides a significant advantage for

scaling. Model training is performed on a separate computing node, which allows the model to be
updated without stopping the classification service, maintaining the continuity of the system.
This is consistent with typical cloud service operating practices and ensures the system's resilience
to changes in data volumes and the intensity of error reports.

This study prioritizes errors in SaaS-type cloud applications based on their frequency of
occurrence in the available dataset. The results are visualized in Figure 23, which shows the
distribution of errors by type, taking into account their relative share.

Fig. 23. Bug prioritization

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

179

The analysis of the graph shows that the most common bugs are related to system productivity,
accounting for 46 % of the total. Such bugs are usually related to response delays, inefficient use
of computing resources, or slow data processing. They have a significant impact on the quality of
user interaction with the application and require immediate response from developers. In second
place in terms of frequency are crash errors, which account for 37 %.
This type of error is critical because it causes the application to suddenly stop working, which can
lead to data loss and disruption of service continuity.

Other types of errors are less common but no less important in terms of ensuring system
reliability. For example, system functionality improvements, security issues, compilation errors,
and resource usage issues together account for about one-fifth of all cases. In particular, security
errors (5 %) require special attention, as even single cases of such failures can have serious
consequences for users and companies, especially in the context of data privacy and regulatory
compliance. The smallest share – only 2 % – is accounted for by errors related to resource usage.
This type usually manifests itself in conditions of large data processing volumes or excessive load
on the computing infrastructure, which, in turn, may indicate the need to optimize
the architecture or scale resources.

The approach proposed in this work has certain limitations. One of the key challenges is the
temporal degradation of the model: with the development of cloud computing applications,
the emergence of new features, or changes in the data structure, the effectiveness of pre-trained
models may decline. To maintain high classification accuracy, it is necessary to regularly
update and retrain models on current data. This will ensure that the models correspond
to the current state of software systems and allow for high productivity to be maintained
in real-world conditions.

Conclusions

Classifying bugs in cloud computing applications using machine learning methods is

an important task that combines technical components with a deep understanding of the subject
area. The study confirms the feasibility and effectiveness of using machine learning algorithms for
automated detection and classification of various types of bugs in a cloud environment. Thanks to
their ability to process large amounts of data generated by cloud systems, these algorithms enable
real-time bug prediction with high accuracy.

The proposed approach contributes to a significant increase in the efficiency of bug detection
and elimination processes, which, in turn, reduces the risk of downtime and increases the reliability
of cloud services. The application of such solutions can be an important component in ensuring
the stable operation of critical information systems, especially in the context of growing business
dependence on cloud technologies.

In addition, a promising area for further research is the implementation of transfer learning
methods, which allow the knowledge gained from previous bug classification tasks to be used
to improve the accuracy of models in new, similar contexts. The application of domain adaptation
methods is also relevant, especially in cases where there is a discrepancy between the distributions
of training and test data.

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

180

References

1. Gupta, M., Gupta, D., Rai, P. (2024), "Exploring the Impact of Software as a Service (SaaS) on Human Life",

EAI Endorsed Transactions on Internet of Things. DOI: https://doi.org/10.4108/eetiot.4821
2. Zhao, Y., Damevski, K., Chen, H. (2023), "A systematic survey of just-in-time software defect prediction", ACM

Computing Surveys, Vol. 55, No. 10, P. 1–35. DOI: https://doi.org/10.1145/3567550
3. Bugayenko, Y., Bakare, A., Cheverda, A., Farina, M., Kruglov, A., Plaksin, Y., Succi, G. (2023), "Prioritizing

tasks in software development: A systematic literature review", PLOS ONE, Vol. 18, No. 4, Article e0283838.
DOI: https://doi.org/10.1371/journal.pone.0283838

4. Shiri Harzevili, N., Boaye Belle, A., Wang, J., Wang, S., Jiang, Z. M., Nagappan, N. (2024),
"A systematic literature review on automated software vulnerability detection using machine learning", ACM
Computing Surveys, Vol. 57, No. 3, P. 1–36. DOI: https://doi.org/10.1145/3699711

5. Tabianan, K., Velu, S., Ravi, V. (2022), "K-means clustering approach for intelligent customer segmentation
using customer purchase behavior data", Sustainability, Vol. 14, No. 12, Article 7243.
DOI: https://doi.org/10.3390/su14127243

6. Waqar, A. (2020), "Software Bug Prioritization in Beta Testing Using Machine Learning Techniques", Journal
of Computer Science, Vol. 1, P. 24–34. DOI: https://doi.org/10.17509/jcs.v1i1.25355

7. Huda, S., Liu, K., Abdelrazek, M., Ibrahim, A., Alyahya, S., Al-Dossari, H., Ahmad, S. (2018), "An Ensemble
Oversampling Model for Class Imbalance Problem in Software Defect Prediction", IEEE Access, Vol. 6,
P. 24184–24195. DOI: https://doi.org/10.1109/ACCESS.2018.2817572

8. Goyal, A., Sardana, N. (2019), "Empirical Analysis of Ensemble Machine Learning Techniques for Bug
Triaging", Proceedings of the Twelfth International Conference on Contemporary Computing (IC3), P. 1–6. DOI:
https://doi.org/10.1109/IC3.2019.8844876

9. Gupta, A., Sharma, S., Goyal, S., Rashid, M. (2020), "Novel XGBoost Tuned Machine Learning Model for
Software Bug Prediction", Proceedings of the International Conference on Intelligent Engineering and
Management (ICIEM), P. 376–380. DOI: https://doi.org/10.1109/ICIEM48762.2020.9160152

10. Ahmed, H. A., Bawany, N. Z., Shamsi, J. A. (2021), "CaPBug-A Framework for Automatic Bug Categorization
and Prioritization Using NLP and Machine Learning Algorithms", IEEE Access,
Vol. 9, P. 50496–50512. DOI: https://doi.org/10.1109/ACCESS.2021.3069248

11. Tabassum, N., Alyas, T., Hamid, M., Saleem, M., Malik, S. (2022), "Hyper-convergence storage framework for
ecocloud correlates", Computers, Materials & Continua, Vol. 70, No. 1, P. 1573–1584.
DOI: https://doi.org/10.32604/cmc.2022.019389

Received (Надійшла) 06.11.2025

Accepted for publication (Прийнята до друку) 09.12.2025
Publication date (Дата публікації) 28.12.2025

About the Authors / Відомості про авторів

Shmatko Oleksandr – PhD (Engineering Sciences), Associate Professor, Kharkiv National University of
Radio Electronics, Associate Professor at the Department of Electronic Computers, Kharkiv, Ukraine; e-mail:
oleksandr.shmatko2@nure.ua; ORCID ID: https://orcid.org/0000-0002-2426-900X

Gamayun Igor – Doctor of Sciences (Engineering), Professor, National Technical University "Kharkiv
Polytechnic Institute", Professor at the Department of Software Engineering and Management Intelligent
Technologies, Kharkiv, Ukraine; e-mail: Ihor.Hamaiun@khpi.edu.ua; ORCID ID: https://orcid.org/0000-0003-
2099-4658

Kolomiitsev Oleksii – Honored Inventor of Ukraine, Doctor of Sciences (Engineering), Professor, National
Technical University "Kharkiv Polytechnic Institute", Professor at the Department Computer Engineering and
Programming, Kharkiv, Ukraine; e-mail: alexus_k@ukr.net; ORCID ID: https://orcid.org/0000-0001-8228-8404

https://doi.org/10.4108/eetiot.4821
https://doi.org/10.1145/3567550
https://doi.org/10.1371/journal.pone.0283838
https://doi.org/10.1145/3699711
https://doi.org/10.3390/su14127243
https://doi.org/10.17509/jcs.v1i1.25355
https://doi.org/10.1109/ACCESS.2018.2817572
https://doi.org/10.1109/IC3.2019.8844876
https://doi.org/10.1109/ICIEM48762.2020.9160152
https://doi.org/10.1109/ACCESS.2021.3069248
https://doi.org/10.32604/cmc.2022.019389
https://orcid.org/0000-0002-2426-900X
mailto:Ihor.Hamaiun@khpi.edu.ua
https://orcid.org/0000-0003-2099-4658
https://orcid.org/0000-0003-2099-4658
mailto:alexus_k@ukr.net
https://orcid.org/0000-0001-8228-8404

Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)

181

Шматко Олександр Віталійович – кандидат технічних наук, доцент, Харківський національний
університет радіоелектроніки, доцент кафедри електронних обчислювальних машин, Харків, Україна.

Гамаюн Ігор Петрович – доктор технічних наук, професор, Національний технічний університет
"Харківський політехнічний інститут", професор кафедри програмної інженерії та інтелектуальних
технологій управління, Харків, Україна.

Коломійцев Олексій Володимирович – заслужений винахідник України, доктор технічних наук,
професор, Національний технічний університет "Харківський політехнічний інститут", професор
кафедри комп’ютерної інженерії та програмування, Харків, Україна.

ГІБРИДНА МОДЕЛЬ МАШИННОГО НАВЧАННЯ
ДЛЯ КЛАСИФІКАЦІЇ ПРОГРАМНИХ ПОМИЛОК

У ХМАРНИХ SAAS-ЗАСТОСУНКАХ

У сучасних хмарних обчислювальних середовищах забезпечення стабільності та надійності програмних
застосунків є одним із ключових чинників ефективної роботи інформаційних систем. Значну частину збоїв у таких
системах спричиняють програмні помилки (баги), які ускладнюють експлуатацію та знижують продуктивність
сервісів. Традиційні методи ручного аналізу звітів про помилки є трудомісткими, тому необхідно розробити
інтелектуальні підходи до автоматизованої класифікації та пріоритизації помилок із використанням методів
машинного навчання. Мета статті – підвищення точності класифікації типів програмних помилок у хмарних
застосунках. Завдання дослідження: формування повного конвеєра автоматизованого оброблення даних баг-
репортів, що охоплює всі етапи – від попереднього очищення до побудови моделі класифікації. Методологічна
основа дослідження полягає у використанні методів оброблення природної мови (NLP), техніки SMOTE для
балансування вибірки, класичних алгоритмів машинного навчання, а також процедури оптимізації
гіперпараметрів RandomizedSearchCV. Якість моделей оцінюється на основі стандартних класифікаційних
метрик, таких як accuracy, precision, recall та F1-score, що забезпечує комплексний і об’єктивний аналіз
отриманих результатів. Результати дослідження. Розроблено гібридну модель для автоматизованої
класифікації помилок, що охоплює етапи збирання, попереднього оброблення, векторизації та моделювання
даних. Проведено порівняльний аналіз точності чотирьох алгоритмів машинного
навчання – наївного баєсівського класифікатора, дерева рішень, випадкового лісу й логістичної регресії –
із використанням різних методів векторизації (Bag-of-Words, TF-IDF, Word2Vec). Для підвищення точності
класифікації застосовано техніку балансування даних SMOTE. Експериментальні дослідження на реальному
наборі даних із хмарного середовища продемонстрували, що модель Random Forest досягла найвищих
показників точності – до 91,7 %. Результати підтверджують ефективність інтеграції алгоритмів машинного
навчання в процеси аналізу й підтримки програмних продуктів у хмарних інфраструктурах.
Висновки. Запропонований підхід забезпечує підвищення точності класифікації помилок у хмарних
обчислювальних системах і може бути використаний у системах моніторингу, DevOps-платформах і засобах
автоматизованого тестування. Результати дослідження є основою для подальшого розроблення
інтелектуальних інструментів прогнозування й пріоритизації дефектів програмного забезпечення.

Ключові слова: класифікація помилок; хмарні обчислення; машинне навчання; TF-IDF; Word2Vec;
випадковий ліс; автоматизація тестування.

Bibliographic descriptions / Бібліографічні описи

Shmatko, O., Gamayun, I., Kolomiitsev, O. (2025), "Hybrid machine learning model for classifying

software bugs in SaaS cloud applications", Management Information Systems and Devises, No. 4 (187),
P. 156–181. DOI: https://doi.org/10.30837/0135-1710.2025.187.156

Шматко О. В., Гамаюн І. П., Коломійцев О. В. Гібридна модель машинного навчання для
класифікації програмних помилок у хмарних SaaS-застосунках. Автоматизовані системи
управління та прилади автоматики. 2025. № 4 (187). С. 156–181.
DOI: https://doi.org/10.30837/0135-1710.2025.187.156

	References
	About the Authors / Відомості про авторів

	Bibliographic descriptions / Бібліографічні описи

