142

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

UDC 004.8:004.9 DOI: https://doi.org/10.30837/0135-1710.2025.187.142

V. Filatov, M. Chernenko

USER TASK SUPPORT IN INFORMATION SYSTEMS
BASED ON AGENT TECHNOLOGIES

The subject matter of this paper concerns the application of multi-agent systems and software agent technologies
for managing and analyzing information resources and t ask flows within distributed, heterogeneous information
environments. It focuses on formal models and execution frameworks that enable intelligent control of complex
agent-oriented workflows. The goal is to develop effective methods and models for representing, coordinating, and
executing agent-oriented tasks, ensuring correctness and efficient resource use in distributed systems. The tasks
addressed include formalizing the information space as an algebraic system comprising objects, relationships, and
operations; defining elementary and functional tasks executed by users or agents; organizing interdependent tasks
into flows; and modeling agent behavior via frame structures and hierarchical Petri nets incorporating metapositions
and metatransitions. The methods employed combine algebraic system modeling, automata theory for agent
behavior analysis, and extended predicate Petri nets with modifications supporting hierarchical task management.
Coordination constraints and workflow correctness properties are specified using Computation Tree Logic (CTL)
and dependency automata to capture inter-task dependencies and atomicity requirements. The work also applies
SQL-based operations to exemplify merging of data during task execution. The results include a formal framework
distinguishing state-based and task-based planning, a modified frame slot model enabling complex task descriptions
with initial conditions and operations, and a hierarchical Petri net scheme with subordinate nets activated
conditionally, thereby optimizing computations. A software agent prototype executing a sequence of conditional
operations on multiple databases demonstrates the practical application of these concepts. The approach reduces
execution time and computational costs by activating only necessary subordinate tasks and avoiding irrational
solutions. The conclusions assert that the proposed agent-oriented modeling and hierarchical task execution
methods successfully address the complexities of distributed information resource management and workflow
control, providing a scalable means for executing fault-tolerant, atomic, and coordinated workflows. This enhances
the reliability and efficiency of multi-agent systems in heterogeneous computing environments.
Keywords: multi-agent systems; hierarchical task management; Petri nets; information resource management.

Introduction

This paper considers a class of multi-agent systems for managing information resources in
distributed systems. A typical representative of this class of problems is the task of planning
a path to achieve a desired goal from a given initial situation. The result of solving such
a problem should be an action plan — a partially ordered set of actions. Such a plan can be
represented as a scenario in which the relationships between vertices are of the types
"goal-subgoal”, "goal-action”, "action-result”, and so on. Any path in this scenario that leads
from a vertex corresponding to the current situation to any of the goal vertices defines an action
plan. The description of situations includes both the state of the external environment and the
state of the information system. Situations form certain generalized states, and actions or changes
in the external environment lead to changes in the currently actualized states.

Among the generalized states, the initial states (usually one) and the final (goal) states are
distinguished. All action-planning tasks can be divided into two types, corresponding to different

© Filatov V., Chernenko M., 2025

143

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

models: state-space planning and task-space planning. The representation of problems in a state
space involves specifying a set of descriptions: states, a set of operators and their effects on state
transitions, and the goal states. State descriptions can take the form of strings of symbols,
vectors, two-dimensional arrays, trees, lists, and so on. Operators transform one state into
another. The state space can be represented as a graph, where vertices are labeled with states
and arcs with operators. The state-space planning method can be regarded as a special
case of planning by reduction, since each application of an operator in the state space reduces
the initial problem to two simpler ones, one of which is elementary. Problem-space planning
consists of the successive reduction of the original problem to increasingly simpler ones until
only elementary problems remain. A partially ordered set of such problems constitutes the
solution to the original problem.

Literature review and problem statement definition

Software agents emerged as one of the most significant achievements in computer science in
the 1990s. The problem of intelligent agents and multi-agent systems (MAS), which has a long
history, was shaped within the scope of research on distributed artificial intelligence and, in
recent years, has claimed one of the leading roles in intelligent information technologies [1].
Agents are used in applied systems where humans and computers are closely interconnected in
managing information processes [2]. The abundance of diverse information on software agents
leads to inconsistencies in defining what constitutes a software agent. Therefore, it is first
necessary to clarify the essence of the concept of a "software agent” and to identify the key
properties of software agents. Below we consider the main properties and specifications
of agent-oriented tasks.

Definition of an Agent-Oriented Task. An agent-oriented task in a workflow is a unit of
work that can be executed by a processing entity, such as an application-level computing system
or, for example, a database management system (DBMS) [3]. A task may be defined
independently of the processing entity capable of executing it, or based on the capabilities and
behavior of that entity. The structure of a task can be specified by defining: a set of task
execution states, a set of transitions between these states, and the conditions that make these
transitions permissible (transition conditions can be used to specify inter-task execution
requirements). The execution order of each task is determined by specifying the set of states
observable from outside and the set of transitions between these states. Furthermore, certain
characteristics of processing entities can be defined that may influence the requirements
for task execution [4].

Coordination Requirements for Agent-Oriented Tasks. Coordination requirements are
typically expressed in terms of inter-task execution dependencies and dataflow dependencies.

Execution or Correctness Requirements. Execution requirements are defined to constrain the
workflow execution in such a way that correctness criteria, dependent on the application,
are met. They include requirements for failure atomicity, execution atomicity (including
visibility rules that determine when the results of a committed task become visible

144

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

to other concurrently running workflows), as well as requirements for synchronous
execution control and recovery.

Failure Atomicity Requirements in Workflows. The traditional notion of failure atomicity is
that the failure of any task causes the entire workflow to fail. However, in many cases,
a workflow may tolerate the failure of a single task by, for example, executing a functionally
equivalent task on another node. A system executing a workflow (a workflow scheduler) must
ensure that any execution completes in a state that satisfies the failure atomicity requirements
specified by the developer. We refer to such states as acceptable workflow termination states.
All other execution states belong to the set of unacceptable termination states, in which failure
atomicity may be violated.

An acceptable termination state can be either committed or aborted. A committed acceptable
termination state is an execution state in which the goals of the workflow have been achieved.
Conversely, an aborted acceptable termination state is a correct termination state in which the
workflow has failed to achieve its goals. If an aborted acceptable termination state is reached, all
undesirable effects of partial workflow execution must be eliminated in accordance with the
failure atomicity requirements [5-7].

Tasks are modeled by their states together with significant events corresponding to
transitions between states — start, commit, rollback, etc., — which may be enforced, rejected,
or delayed. Inter-task dependencies, such as ordering dependencies and existence dependencies
between significant task events, are formally defined using Computation Tree Logic (CTL) and
have corresponding dependency automata that can be automatically constructed. To address the
aforementioned characteristics in user tasks, it is advisable, at the first stage, to consider issues
related to the information space and, specifically, to the formal representation of such a space.

Research objective. The objective of this work is to develop effective models and methods
for managing and analyzing task flows within a unified heterogeneous information space, based
on software agent technology.

Research materials and methods

Development of a model of the distributed system’s information space

The inf ormation space of a distributed information system can be represented as an
abstract algebraic system

P=<0O,S, Q>, 1)

where O - the objects of the information space; S — the relationships between objects O;
Q — the set of operations for manipulating objects within the space P .

The objects in model (1) can include components of a modern computing system —
files of all types, directories, logical and physical disks, personal computers, and so
forth. The relationship s, €S between the objects of the information space defines

a specific configuration of the computing environment p, =<o0;,s;,q; >, where p, e P, 0, €0,
g, € Q, oriented towards a specific user or group of users u, €U, i=1LN, where N is
the number of users.

145

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Depending on the goals set by the user and the computing environment, all actions
are performed based on operations from Q.

All operations on objects, according to the defined goals, are initiated by a user u, eU of
the information space, following either a formalized action plan x; (t),X;(t),..x, (t)
or a unitary action x; (t).

In the general case, the i-th action plan x; (t) if executed as a one-time interaction between

the user and the information environment (such as viewing the contents of a file, moving a file
within the computing environment, etc.), can be interpreted as an elementary task

that a user u, e U solves with the help of the information system P(O, 5,Q).

The result of solving an elementary task x; (t) can be defined as a mapping z, : x, = Y;, the
execution of which requires an operation q,, iel, where y, eY is the solution to the
task x (t). An elementary task, within the framework of the proposed approach, can be
represented as z, = (0,5, % (t),Y;).

Elementary tasks can be combined into functional tasks by merging elementary operations
into a sequence of interrelated operations forming an algorithm A, ={q1,qi,...qm}, i=1m,

A €A, keK where A is the set of solutions to functional tasks and K is the number
of functional tasks.

Depending on the structure and interdependencies of the tasks solved by the user, they
can be organized into task flows. A task flow A < A is defined as a sequence of tasks for
which the following condition is true: y; (t)= pij(xij (t)) iel, jeK, considering the
constraint x; (t)=y;(t), i# j, meaning that the result of solving the preceding task

serves as the input for executing the subsequent task. The interrelationship scheme of subtasks
in a flow is shown in Fig. 1.

x,,(t) Y () =x,() Y (£ =x,() Vi, (@)

_ zu z12 | o Zim

¥

Fig. 1. The interrelationship scheme of subtasks in a flow

To implement the interaction technology of a software agent with objects of
a heterogeneous computational environment, a frame structure can be used as a model of the
software agent.

A slot in such a model is a logical construct designed to perform specific tasks assigned to
the frame — that is, to the software agent. Slots in the frame may be removed, added,
or reassigned to different functional roles.

146

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Formal Model of a Software Agent

Representing the logical model of a software agent in the form of a frame makes it possible
to effectively apply automata theory for constructing and analyzing the model of agent behavior.

In general, such a model can be expressed as follows:

FR{(R., Cyis Cpzy - Cin)i (Ros Caty Caos e Ca)y (RaCin) e
where FR — the name of the frame; <Ri,Ci> — the i-th slot of the frame; R, — the slot name;

C. —the slot value.

A slot in model (2) is a logical construct for performing specific tasks of the frame (software
agent). Slots can be deleted, added, or reassigned. However, in the form (2), the classical slot

representation as (name), (value) cannot fully reflect the requirements of a logical

model of a software agent [8, 9].
We modify the structure of the slot and present it in the following form:

SLOT =Y, D, dom, r,, Q, W), ©)
where Y — a set of attribute names; D - a set of domains; dom - a Y — D mapping;
I, — a tuple-model of the agent’s i-th task; W — a set of operations over relations; r. = {R},

where {R } - a set of states of the tuple-model r,; Q —a set defining the initial conditions and

criteria for task execution.
A slot may be designed using a typical set of attributes

Y = {(OBJ>, (ACT), (CON), <STA>}. Table 1 lists possible basic attribute types.

Table 1. Basic attribute types

Entity Name Description
OBJECT OBG Database, file, folder, disk, PC
ACTION ACT Copy, monitor, protect
CONDITION CON IF-THEN predicate
STATUS STA 1 — action executed successfully;
0 — action not executed;
* — indeterminate result

In the proposed "frame-software agent” model, n slots form a finite number of internal
agent states. Each slot solves one task in the information environment and is associated with
exactly one action. Each action elicits a reaction signal from the environment.

The behavior of the software agent, consistent with its functional goals, can be implemented,
for example, using the theory of finite-state machines.

Example. Task for a software agent. Every day at 18:00, copy the file Itog.txt from directory
C:\PR to directory C:\ARXIV. The structure of the software agent is shown in Table 2.

147

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Table 2. Agent’s structure

OBG CON ACT STA
C:\PR\Itog.txt Time = 18:00 Copy from C:\PR to C:\ARXIV 1

Network Model for Representing and Analyzing Interrelated Tasks

As a visual means of representing a task flow, a network model can be proposed.
It provides a graphical representation of elementary tasks and their interrelations, whose
execution is required to complete the entire task flow. In this model, the network consists
of directed arcs connecting pairs of nodes. Arcs (edges) represent elementary tasks
characterized by computational resource costs. Nodes (depicted as circles) represent events,
i.e., strictly defined time instants.

For example, an event may represent the moment when all database operations
(insert, update, edit) are completed, enabling a file-copy operation into an archive directory.

Formally, such a task flow can be represented as:

A ={t, 0, Gy, s},
where A - a task flow name; g, — a database merge operation; ¢, — an update operation on
a file attribute; g, — a logical operation identifying user exit from edit mode; g, — a database file

copy operation to the archive. Fig. 2 illustrates a fragment of such a network model.
q,

9> q.

O (2 ()
2 4 > 5

©/

Fig. 2. A network model representing a task flow

Representing the workflow as a node—task model has significant advantages compared to the
node—event method. Here, nodes represent tasks, and arcs only indicate precedence relations.
There is no need to introduce the concept of an event, which simplifies network construction.
Each task is uniquely associated with a node, and task execution is characterized by its duration.
This approach provides access to important characteristics:

— earliest start and finish times of tasks;

— latest start and finish times of tasks;

— total time reserve.

A particular interest lies in managing and analyzing information resources with a stochastic
object structure. This class of problems is analyzed using GERT systems (Graphical Evaluation
and Review Technique).

148

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

A stochastic network is defined as one where the execution time of each operation follows a
probability distribution [10]. Execution of a task at a node is not necessarily required for all
incoming arcs. Nodes represent system states. Arcs represent transitions between states,
corresponding to generalized operations defined by execution probabilities and distribution
densities. Each node in a stochastic network thus performs both input and output functions.

Example. In a regional emergency management system, decision-support tasks are
implemented through autonomous scenario analysis of possible emergency cases (Fig. 3).

Fig. 3. A stochastic network example

Node 1: The duty officer receives probabilistic emergency alerts (fires, floods, industrial
accidents, or false alarms — nodes 2, 3, 5, 4 correspondingly). Probabilities satisfy
p12 + pl3+ pld + pl5=1.

Assume, the situation is classified as a "Fire" by preliminary data, it is leading to scenarios:
high danger (node 6), medium danger (node 7), or manageable by standard crew (node 8).
Here p26 + p27 + p28 =1.

The next nodes layer for scenario is build on top of deterministic nodes (bold in the
diagram). They represent information support tasks, e.g., loading of databases (node 9),
SQL queries for backup forces and evacuation sites (nodes 10, 11), and assessment of available
local resources (node 12). By defining network parameters, one can estimate the readiness
of the emergency system to respond to evolving crises [11].

High-Level Network Representation of Agent-Oriented Tasks

The design and operation of automated decision-support systems under strict resource
constraints face difficulties in guaranteeing required functional and operational properties.
Existing diagnostic tools mainly provide state monitoring and partial task execution control.
Performance depends largely on application quality, complicated further by distributed data
processing and human factors during system design.

An alternative formalism for systemic situational analysis is Petri nets [13, 14]. Petri nets
allow modeling of parallel and distributed algorithms, including conflict and undesired scenarios.

Formally, an algorithm graph scheme is a directed graph: G :<V, E>, where V - the set of
vertices and E - the set of arcs.

149

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Vertices are of three types:

Operator vertices describe actions (including mandatory start and end).

Choice vertices describe conditional branching (“yes"/"no"), has one incoming and two
labeled outcoming arcs.

Auxiliary vertices contain 3 groups:

— parallel branching (one input — many outputs) describe parallel execution of
independent actions;

— parallel merging (many inputs — one output, requiring all);

— conditional merging (many inputs — one output, requiring any one).

An important advantage of graph-schemes is that the algorithmic graph-scheme can be
formally transformed into a Petri net of a special type — namely, a free-choice Petri net. In this
case, the justification of the correctness of the algorithmic graph-scheme reduces to verifying the
correctness and safety of the corresponding Petri net. In free-choice Petri nets, each position
(condition) that enables more than one transition is the sole enabling position for those
transitions. The structural properties of free-choice Petri nets made it possible to develop
efficient algorithms for their semantic analysis directly based on the network structure.

However, modeling control algorithms by means of algorithmic graph-schemes (free-choice
Petri nets) has a number of significant drawbacks. In a graph-scheme, the algorithmic structure is
predetermined and does not allow, in particular, dynamic parallelization of a task. Furthermore,
the graph-scheme of an algorithm does not possess a modular structure, which makes the
modeling and analysis of large-scale tasks rather difficult. To overcome this limitation, one may
employ an extension of the standard Petri net formalism — nested Petri nets.

Nested Petri nets in modeling and analysis of complex interrelated processes

In nested Petri nets, tokens marking positions are regarded as objects possessing
autonomous behavior, which, in turn, is also described by certain Petri nets. The term
"nested nets" indicates that elements of the nets themselves are nets, similar to how, in a system
of nested sets, the elements of a given set may themselves be sets. Nested Petri nets are
convenient and powerful tool for modeling and analyzing hierarchical multi-agent distributed
systems. They possess an inherent mechanism of modularity. Modular Petri nets can be
considered as a special case of nested Petri nets.

Compared with other extensions of the Petri net formalism, owing to the concept of object
and it’s construction, nested Petri nets preserve such important properties of standard Petri
nets as simplicity, clarity of representation, and decidability of certain properties crucial
for verification [14].

A nested Petri net consists of a system (root) net and a set of element nets representing the
tokens of the system net.

In the simplest case of a two-level nested net, the element nets are ordinary Petri nets, in
which tokens, as usual, are depicted as black dots, have no internal structure, and are
indistinguishable from one another.

150

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

The behavior of a nested Petri net involves four types of steps:

Transfer step: firing of a transition in the system net according to the standard rules for high-
level Petri nets, where element nets are treated as tokens without internal structure. A transfer
step may move, create, or remove objects, but cannot alter their internal state.

Element-autonomous step: alters only the internal state (marking) of an element net without
changing its location in the system net. This step is also executed according to the standard
transition-firing rules of a Petri net.

Horizontal synchronization step: simultaneous firing of two transitions in two element
nets located within the same position of the system net. Transitions that must fire
synchronously are marked with mutually complementary labels from a special set of labels
for horizontal synchronization.

Finally, Vertical synchronization step: used to synchronize a transition in the system net
with certain transitions of the element nets. Transitions that must fire synchronously are labeled
with marks from a special set of vertical synchronization labels. In this case, the label of
a transition in the system net and the label of the corresponding transition in the element net
must be mutually complementary.

The element nets that are moved from the preconditions of the transition in the system net
during its firing are called the engaged element nets. Vertical synchronization thus means
simultaneous firing of the transition in the system net and the transitions (marked with
complementary labels) in the engaged element nets.

When solving problems of controlling distributed multi-agent systems, the complexity of
control algorithms increases substantially, which in turn raises the importance of modeling
various scenarios of system behavior under different management strategies. This creates the
need for tools capable of building illustrative models of such systems’ behavior and supporting
automatic verification of their semantic (behavioral) properties.

Nested Petri nets possess the following properties that make them a convenient tool for
modeling and analyzing control algorithms in multi-agent systems:

— they feature a hierarchical and modular structure, which allows the model to clearly
reflect the hierarchical and modular structure of the algorithm;

— element nets in a nested Petri net have their own structure and behavior, making them
well-suited for modeling agents in a multi-agent system;

— horizontal synchronization of element nets corresponds to agent-to-agent interaction,
while vertical synchronization models agent actions that modify the state of the environment
external to those agents.

From the foregoing, it follows that nested Petri nets offer sufficiently rich expressive
capabilities.

At the same time, being an extension of standard Petri nets, they preserve their advantages
of simplicity and clarity of representation. Moreover, for nested Petri nets, certain properties
essential for verification remain decidable [15].

151

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Research Results

Hierarchy of Networks of Interconnected Subtasks with Variable Structure
Let us consider the specific aspects of constructing networks and managing the dynamics of
modeling data processing processes through the use of a combination of modified predicate nets
and modified E-nets. Taking into account the known difficulties in interpreting
and modeling data processing processes using predicate nets, it is deemed expedient to apply
the following modification of nets:
Ser =(P. T, F, A, C, {V,}, K, M), (4)

where P — a set of positions; T — a set of transitions; F — an incidence function between
positions and transitions; C — a color function of tokens; A — a time parameter assigned to all

network components P, T, F,M,; V. — an enabling condition of transitions t, €T, ke K

S

related to the network components: Vp. — an enabling condition with respect to its input
positions; Vpo — a condition of enabling t, €T, k e K with respect to its output positions;
k

V. —an enabling condition t, €T, k € K directly related to the transition; V,,, — an enabling

k

condition t, €T, ke K related to the marking of the incident positions, leL; V. — an
enabling condition t, e T, k € K associated with the arcs between input/output positions; K —
the token capacity of positions considering C; M, — the initial marking vector.

The enabling condition of transition V, also includes such properties as reliability,

complexity, cost, and the degree of credibility of a specific event.

The analysis of possible solutions has demonstrated that, for the net (4), in the tasks
of modeling subprocesses based on S’ networks, it is advisable to apply interpreted
metapositions. This is due to the fact that the positions themselves interpret the enabling
conditions of the actions of simulated events and, at the same time, define the state space
of the model [16-18].

Example. A resource of type A is provided by information support and stored in database

files, e.g., B;,B,,, ... B,,, ne N, where N is the number of databases. The search condition
for the considered fragment of a decision-support system is formulated as follows: to determine
the specified quantity of resource type A = A" over the set {B,,B,, ...B,}, neN.
The search of a solution is performed through two types of actions: at the first step, a SEARCH
over database B, is executed; if the condition is not satisfied, a UNION of databases B, and B,

is carried out and the search is repeated.
The procedure of searching and merging databases can be carried out in terms of the
Structured Query Language (SQL), using the SELECT, JOIN, and INSERT options:

SELECT *
FROM bl
JOIN b2 ON b1l.id = b2.id;

152

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Let us represent a fragment of the above problem in the form of a modified predicate
Petri net S (Fig. 4).

p

P h P L X
©—>D—>J ;::llllllll’Dlllllllllbo

Fig. 4. S Petri net

The set of positions {po, pl} interpret, respectively, the input and output conditions of
executing the action represented by transition t,. The set of positions {pl, pz} interpret,
respectively, the input and output conditions of executing action t,.

The initial marking vector M, = (1, 0, 0) defines the initial state space of the net.

Description of the main constraints shown in Fig. 4. Vpk, is the input condition of transition
teT, keK; Vpko is the output condition of transition t;. If the input condition Vpk, #V,
of transition t, is not satisfied, then for the given transition t €T, k e K, a subordinate
net (S’) Is generated (Fig. 5), where position p, serves as a metaposition.

The initial marking vector M;=(1, 0, 0, 0) defines the initial state space of this
subordinate net. The marking of position p,; and the execution of transition t, lead to the

marking of the metaposition p,, which activates the execution of S net.

S’ network's
extension

Fig. 5. S Petri net with an S’ extension

If the desired solution cannot be obtained by the means of S S’, a hierarchy of tasks is
constructed based on searching for solutions from the set {B,,B,,... B}, ne N through

merging databases and extending the S’ net.
Let us present the above problem as a conceptual task for a software agent:

153

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Table 3. Structure of the software agent "AGENT"

ID OBG: CON: ACT: STA:
Time=10- Select sum([A1]) from IF A1=Al1* is TRUE END

S1 | C\BASE\bl.mdb 00 b1.dbf ELSE S2

Join b1, b2 into bl;

C\BASE\b1, ek IF A1=Al1* is TRUE END
S2 b2 mdb Select sum([Al]) from ELSE S3
bl.dbf
o | CBASEGLb2 | ., g,r('a(f’tls’ubrﬁ'([t’jl'ﬂt?rgrﬁ IF AL=AL* is TRUE END
b3.mdb ELSE END

bl.dbf

The software agent "AGENT" implements the task execution as a sequence of three consecutive
actions in the form of operations S1, S2, and S3 with databases bl, b2, and b3. If the task

condition A = A" is satisfied at stage S1, the overall task is considered completed. Otherwise, an
operation is executed in the form of merging two databases (bl and b2), and the query with condition
A = A’ is repeated, and so on, for up to three iterations. The software agent technology proposed in

this paper allows one to successfully and efficiently solve a complex of tasks of managing and
analyzing information within a unified heterogeneous information space.

Conclusions

As a result of the analysis of methods for managing information resources in corporate
systems, an approach to the representation of agent-oriented tasks has been considered, based
on analyzing the state of the external environment and the state of the information system.
Two main methods of representing agent-oriented tasks have been investigated: state-based
planning and task-based planning. The specifics of managing the state space and the structure of
modified predicate nets have been analyzed in the context of hierarchical interaction of tasks.

The results obtained can be extended to a certain hierarchy of subordinate nets, taking into
account their features and the necessity of generating metapositions and metatransitions.
The proposed approach makes it possible to reduce time and computational resources through
the activation of subordinate tasks, identification of stable dependencies, and exclusion
of irrational and unsatisfactory solutions from consideration.

References

1. Wooldridge, M. (2002), "An Introduction to Multi-Agent Systems". John Wiley & Sons Ltd, 366 p.

2. Ponomarenko, L. A., Tsybulnyk, Ye. Ye., Filatov, V. A. (2023), "Agent technologies in information
search and decision-making tasks". USiM: Control systems and machines, No. 1, P. 36-41.

3. Nagata, T., Ohono, M., Kubokawa, J., Sasaki, H., Fujita, H. (2002), "A multi-agent approach to unit
commitment problems". Proc. IEEE PES Winter Meet., P. 64-69.

4. Filatov, V. O., Yerokhin, M. A. (2023), "Improved multiobjective optimization in business process
management using R-NSGA-II". Radio Electronics, Computer Science, Control, No. 3(187).
DOI: https://doi.org/10.15588/1607-3274-2023-3-18

https://doi.org/10.15588/1607-3274-2023-3-18

154

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

5. Konios, A., Khan, Y. I., Garcia-Constantino, M., Lopez-Nava, I. H. (2023), "A Modular Framework
for Modelling and Verification of Activities in Ambient Intelligent Systems". Lecture Notes in Computer
Science, Vol. 14029. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-35748-0_35

6. Pokorny, J., Richta, K., Richta, T. (2018), "Information Systems Development via Model
Transformations”. Lecture Notes in Computer Science, Mol. 10751. Springer, Cham.
DOI: https://doi.org/10.1007/978-3-319-75417-8 63

7. Ziegler, P, Dittrich, K. R. (2007), "Data Integration". Problems, Approaches, and Perspectives, Conceptual
Modelling in Information Systems Engineering, P. 39-58. DOI: 10.1007/978-3-540-72677-7_3

8. Nagata, T., Nakayama, H., Utatani, M., Sasaki, H. (2002), "A multi-agent approach to power system
normal state operation", Proc. IEEE/Power Eng. Soc. General Meeting, Vol. 3, P. 1582-1586.

9. Solanki, J. M., Khushalani, S., Schulz N. N. (2007), "A multi-agent solution to distribution systems
restoration”. IEEE Trans. Power Syst., Vol. 22, No. 3, P. 1026-1034.

10. Martin, N., Depaire, B., Caris, A. (2016), "The use of process mining in business process simulation model
construction: structuring the field". Business & Information Systems Engineering, Vol. 58, No. 1, P. 73-87.

11. Pourbafrani, M., Jiao, S., van der Aalst W. M. P. (2021), "SIMPT: Process improvement using interactive
simulation of time-aware process trees". Proceedings of RCIS 2021, Lecture Notes in Business
Information Processing (LNBIP), P. 588-594.

12. Girault, C., & Valk, R. (2003), "Petri Nets for Systems Engineering"”. Springer Berlin Heidelberg.
DOI: https://doi.org/10.1007/978-3-662-05324-9

13. Murata, T. (1989), "Petri nets: Properties, analysis and applications". Proceedings of the IEEE, No. 77(4),
P. 541-580. DOI: https://doi.org/10.1109/5.24143

14. Medina-Garcia, S., Medina, J., Montafio, O., Gonzalez-Hernandez, M., Hernanndez Gress, E. (2023),
"A Petri net approach for business process modeling and simulation”. Applied Sciences, Vol. 13, 11192.
DOI: 10.3390/app132011192

15. Alves, F., Merlim, R., de Carvalho, L., Souza, F. (2023), "BPMN and Petri Nets: A case study of process
optimization in a project engineering company". Proceedings of the 7th International Academic Research
Conference on Engineering, IT and Applied Sciences. DOI: 10.33422/7th.iarmea.2023.07.124

16. Qin, J., Zhao, N., Xie, Z., et al. (2017), "Business Process Modelling based on Petri nets". MATEC Web of
Conference, Vol. 139, No. 1, P. 105-113.

17. Li, Z., Ye, Z. (2021), "A Petri Nets Evolution Method that Supports BPMN Model Changes". Scientific
Programming, Vol. 2021, Issue 3, P. 1-16.

18. Van Hee, K. M., Sidorova, N., van der Werf, J. M. (2013), "Business process modeling using Petri nets".
Transactions on Petri Nets and Other Models of Concurrency VII, Vol. 7480, P. 116-161.
DOI: https://doi.org/10.1007/978-3-642-38143-0 4

19. Kucherenko, 1., Filatov, V. O. (2004), "Decision-making models in complex systems analysis problems
based on high-level networks". Information processing systems, No. 5, P. 139-148.

Received (Haodiviuna) 19.08.2025
Accepted for publication (Ilpuiinama 0o opyxy) 07.11.2025
Publication date (Jama nyonixayii) 28.12.2025

About the Authors / Bioomocmi npo aémopis

Filatov Valentin — Doctor of Sciences (Engineering), Professor, Kharkiv National University of Radio
Electronics, Professor of Artificial Intelligence Department, Kharkiv, Ukraine; e-mail:
valentin.filatov@nure.ua; ORCID ID: https://orcid.org/0000-0002-3718-2077

https://doi.org/10.1007/978-3-031-35748-0_35
https://doi.org/10.1007/978-3-319-75417-8_63
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/978-3-642-38143-0_4
mailto:valentin.filatov@nure.ua
https://orcid.org/0000-0002-3718-2077

155

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Chernenko Mykola — PhD (Engineering Sciences), Kharkiv National University of Radio Electronics,
Assistant of Artificial Intelligence Department, Kharkiv, Ukraine; e-mail: mykola.chernenko@nure.ua;
ORCID ID: https://orcid.org/0009-0006-0623-5056

®dinatop Bajentun OJieKCaHAPOBHMY — JOKTOp TEXHIYHHMX Hayk, mpodecop, XapKiBChKHN
HalllOHAJIBHUI YHIBEPCUTET PadioeIeKTPOHIKH, Ipodecop Kadeapyu MTydIHOTO iHTENeKTY, XapKiB, YKpaiHa.

Yepuenko Mwukosaa BojgoaumMupoBHY — KaHIUAAT TEXHIYHUX HAyK, aCHCTCHT Kadenpu IMITy4IHOTO
IHTEJIEKTY, XapKiBChKUI HaIlIOHAJTHLHUHA YHIBEPCUTET PaioeIeKTPOHIKH, XapKiB, YKpaiHa.

NIJITPUMKA 3ABJIAHb KOPUCTYBAYA B IHOOPMAIIIHMHUX
CUCTEMAX HA OCHOBI ATEHTHUX TEXHOJIOT' T

IIpexmeToM po0GOTH € 3aCTOCYBaHHA MYJIBTHATCHTHHUX CHCTEM 1 TEXHOJIOTIH NPOTpaMHUX AareHTIB IUIA
YOpaBIiHHA W aHaiizy iHQOpPMAMIMHUX pecypciB 1 TMOTOKIB 3aBAaHb y PO3MOAUICHUX TE€TEPOTCHHUX
iHpopMmamiiiHuX cepenoBuiax. Po3rasHyTo (opManbHI MOAENi Ta MeXi BUKOHAHHS, IO 3a0e3MeUyroTh
IHTEJIeKTyaJIbHUH KOHTPOJIb CKIAJAHUX AarcHTHO-OPIEHTOBAaHMX poOouux mponeciB. MeTa AocCaigxeHHS —
po3poOuTH epeKTUBHI METOAM ¥ Monedl MOJaHHS, KOOpIWHALii Ta BUKOHAHHS areHTHO-OPIEHTOBAaHUX
3aBllaHb, [0 T'APAHTYIOTh KOPEKTHICTh i €(EKTUBHE BHKOPHCTAHHS PECYPCIB Y PO3MOJIIICHUX CUCTEMax.
3aaannsa: Qopmamizamis iHPoOpMAIIHHOTO MPOCTOPY SK aureOpaidHOi CHUCTEMH; BH3HAYCHHS
eJIEeMEHTApHUX 1 (YHKIIIOHATBbHUX 3aBJaHb, OpraHi3allis B3a€MO3B’S3KiB MK HHMH B IOTOKH 3aBlIaHb;
MOJICITIOBaHHS TIOBEJIHKH arcHTIB 3a JOMOMOTOK CTPYKTYp ¢peimiB Ta iepapxiyHux mepex [lerpi 3
METaMno3uIlisAIMU i MeTanepexogamu. MeToau OCHOBaHI Ha (opManbHOMY MOJENIOBaHHI iH(OpMaIiitHOro
MPOCTOPY, BIPOBAHKCHHI TEOpii aBTOMATIB JJisi aHANi3y MOBEIIHKH arcHTiB, BUKOPUCTAHHI PO3IIMPEHUX
npeauKaTHUX Mepex [leTpi 3 METOI MiNTPUMKH i€papXivyHOTO YIPABIIHHSA 3aBAAHHSIMH, a TaKOX Ha
3acTocyBaHHI JIOTikM oOumciioBansHOro nepeBa (CTL) it aBromara 3anmexxHocTed anst (GopMaiIbHOTO
BH3HAYCHHS B3a€MO3AJCKHOCTEH 1 BHMOT [0 Y3TOKCHOCTI BUKOHAHHS. SIK TPHKIAA, BHKOPHCTAHO
onepanii SQL s imrocTpanii 3uTTs 6a3 TaHUX y MpoIlleci BAKOHAHHS 3aBJaHb. Pe3yJbTaT 10caiiKeHHs
nependavyarTh: (opMaizoBaHy CTPYKTYpPY 3aBIaHb arcHTIB 13 YITKUM PO3MEKYBaHHSM IUTAaHYBaHHS B
IIPOCTOP1 CTaHIB i 3aBIaHb, YAOCKOHAJICHY MOJENb CIOTIB y (peiimi A KOMIIJIEKCHOTO ONMUCY aTpHOYTiB
3aBJaHb, i€papXiuHUi Kapkac Mepex [leTpi 3 miieraTuMu Mepekamu JUisi ONTHMi3alii OOYMCICHb 1
peanizalito IporpaMHOTO areHTa, AKUil MocIiJOBHO BUKOHY€E YMOBH i3 3MUTTAM 0a3 IaHUX AJIs TOCSTHEHHA
mineit. Ile mae 3MOry CKOpPOTHTH 4Yac BHUKOHAHHS U OOYHCIIOBAJbHI PECypcH BHACIIIOK AKTUBALU] TiNbKH
HEOOXIJIHUX Ti3aBJaHb 1 BHJIYYCHHSA HEe(EKTUBHUX pillieHb. BHCHOBKH MIITBEP/DKYIOTh, IO 3alIPOIIOHOBAHI
MOJIeTb 1 MeTOAM €(EeKTHBHO PO3B’A3yIOTh CKJIAIHI 3aBIAHHS YIPABIiHHS PO3MOAUICHUMH IH(pOpMAaIiiHIMH
pecypcamMu ¥ KOHTPOJFO POOOYMX TMpOIECiB, 3abe3rmedyrour MacimrTaboBaHICTh, HAMIHHICTH I aTOMapHICTh
BUKOHAHHS B MYJIbTHATCHTHUX CUCTEMAaX TeTePOreHHUX O0UHCITIOBAIHHUX CEPEIOBUIIL.

Kio4yoBi cioBa: MynbTHAareHTHI CHCTEMHM; iepapXidyHe YIpaBIiHHSA 3aBHaHHAMH; Mepexi [lerpi;
yIpaBIliHHS 1HPOPMAIIMHUMU pecypcaMH.

Bibliographic descriptions / Bioaioepaghiuni onucu

Filatov, V., Chernenko, M. (2025), "User task support in information systems based on agent
technologies”, Management Information Systems and Devises, No. 4 (187), P. 142-155.
DOI: https://doi.org/10.30837/0135-1710.2025.187.142

®inaroB B. O., Yepnenko M. B. Ilintpumka 3aBraHb KOpucTyBada B iHOpMaLifHUX cHCTeMax Ha

OCHOBI areHTHHUX TEXHOJOTIH. Agmomamuz068ani cucmemu ynpaeiints ma npuiaou asmomamuru. 2025.
Ne 4 (187). C. 142-155. DOI: https://doi.org/10.30837/0135-1710.2025.187.142

mailto:mykola.chernenko@nure.ua
https://orcid.org/0009-0006-0623-5056

	About the Authors / Відомості про авторів
	Bibliographic descriptions / Бібліографічні описи

