
 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187) 
 

©   Filatov V., Chernenko M., 2025 

142 

UDC 004.8:004.9 DOI: https://doi.org/10.30837/0135-1710.2025.187.142 
 
V. Filatov, M. Chernenko 
 
 

USER TASK SUPPORT IN INFORMATION SYSTEMS 
BASED ON AGENT TECHNOLOGIES 

 
The subject matter of this paper concerns the application of multi-agent systems and software agent technologies 
for managing and analyzing information resources and t ask flows within distributed, heterogeneous information 
environments. It focuses on formal models and execution frameworks that enable intelligent control of complex 
agent-oriented workflows. The goal is to develop effective methods and models for representing, coordinating, and 
executing agent-oriented tasks, ensuring correctness and efficient resource use in distributed systems. The tasks 
addressed include formalizing the information space as an algebraic system comprising objects, relationships, and 
operations; defining elementary and functional tasks executed by users or agents; organizing interdependent tasks 
into flows; and modeling agent behavior via frame structures and hierarchical Petri nets incorporating metapositions 
and metatransitions. The methods employed combine algebraic system modeling, automata theory for agent 
behavior analysis, and extended predicate Petri nets with modifications supporting hierarchical task management. 
Coordination constraints and workflow correctness properties are specified using Computation Tree Logic (CTL) 
and dependency automata to capture inter-task dependencies and atomicity requirements. The work also applies 
SQL-based operations to exemplify merging of data during task execution. The results include a formal framework 
distinguishing state-based and task-based planning, a modified frame slot model enabling complex task descriptions 
with initial conditions and operations, and a hierarchical Petri net scheme with subordinate nets activated 
conditionally, thereby optimizing computations. A software agent prototype executing a sequence of conditional 
operations on multiple databases demonstrates the practical application of these concepts. The approach reduces 
execution time and computational costs by activating only necessary subordinate tasks and avoiding irrational 
solutions. The conclusions assert that the proposed agent-oriented modeling and hierarchical task execution 
methods successfully address the complexities of distributed information resource management and workflow 
control, providing a scalable means for executing fault-tolerant, atomic, and coordinated workflows. This enhances 
the reliability and efficiency of multi-agent systems in heterogeneous computing environments.  

Keywords: multi-agent systems; hierarchical task management; Petri nets; information resource management. 
 

Introduction 
 

This paper considers a class of multi-agent systems for managing information resources in 
distributed systems. A typical representative of this class of problems is the task of planning  
a path to achieve a desired goal from a given initial situation. The result of solving such  
a problem should be an action plan – a partially ordered set of actions. Such a plan can be 
represented as a scenario in which the relationships between vertices are of the types  
"goal-subgoal", "goal-action", "action-result", and so on. Any path in this scenario that leads 
from a vertex corresponding to the current situation to any of the goal vertices defines an action 
plan. The description of situations includes both the state of the external environment and the 
state of the information system. Situations form certain generalized states, and actions or changes 
in the external environment lead to changes in the currently actualized states. 

Among the generalized states, the initial states (usually one) and the final (goal) states are 
distinguished. All action-planning tasks can be divided into two types, corresponding to different 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

143 

models: state-space planning and task-space planning. The representation of problems in a state 
space involves specifying a set of descriptions: states, a set of operators and their effects on state 
transitions, and the goal states. State descriptions can take the form of strings of symbols, 
vectors, two-dimensional arrays, trees, lists, and so on. Operators transform one state into 
another. The state space can be represented as a graph, where vertices are labeled with states  
and arcs with operators. The state-space planning method can be regarded as a special  
case of planning by reduction, since each application of an operator in the state space reduces  
the initial problem to two simpler ones, one of which is elementary. Problem-space planning 
consists of the successive reduction of the original problem to increasingly simpler ones until 
only elementary problems remain. A partially ordered set of such problems constitutes the 
solution to the original problem. 

 
Literature review and problem statement definition 

 
Software agents emerged as one of the most significant achievements in computer science in 

the 1990s. The problem of intelligent agents and multi-agent systems (MAS), which has a long 
history, was shaped within the scope of research on distributed artificial intelligence and, in 
recent years, has claimed one of the leading roles in intelligent information technologies [1]. 
Agents are used in applied systems where humans and computers are closely interconnected in 
managing information processes [2]. The abundance of diverse information on software agents 
leads to inconsistencies in defining what constitutes a software agent. Therefore, it is first 
necessary to clarify the essence of the concept of a "software agent" and to identify the key 
properties of software agents. Below we consider the main properties and specifications  
of agent-oriented tasks. 

Definition of an Agent-Oriented Task. An agent-oriented task in a workflow is a unit of 
work that can be executed by a processing entity, such as an application-level computing system 
or, for example, a database management system (DBMS) [3]. A task may be defined 
independently of the processing entity capable of executing it, or based on the capabilities and 
behavior of that entity. The structure of a task can be specified by defining: a set of task 
execution  states, a set of transitions between these states, and the conditions that make these 
transitions permissible (transition conditions can be used to specify inter-task execution 
requirements). The execution order of each task is determined by specifying the set of states 
observable from outside and the set of transitions between these states. Furthermore, certain 
characteristics of processing entities can be defined that may influence the requirements  
for task execution [4]. 

Coordination Requirements for Agent-Oriented Tasks. Coordination requirements are 
typically expressed in terms of inter-task execution dependencies and dataflow dependencies. 

Execution or Correctness Requirements. Execution requirements are defined to constrain the 
workflow execution in such a way that correctness criteria, dependent on the application,  
are met. They include requirements for failure atomicity, execution atomicity (including 
visibility rules that determine when the results of a committed task become visible  



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

144 

to other concurrently running workflows), as well as requirements for synchronous  
execution control and recovery. 

Failure Atomicity Requirements in Workflows. The traditional notion of failure atomicity is 
that the failure of any task causes the entire workflow to fail. However, in many cases,  
a workflow may tolerate the failure of a single task by, for example, executing a functionally 
equivalent task on another node. A system executing a workflow (a workflow scheduler) must 
ensure that any execution completes in a state that satisfies the failure atomicity requirements 
specified by the developer. We refer to such states as acceptable workflow termination states.  
All other execution states belong to the set of unacceptable termination states, in which failure 
atomicity may be violated. 

An acceptable termination state can be either committed or aborted. A committed acceptable 
termination state is an execution state in which the goals of the workflow have been achieved. 
Conversely, an aborted acceptable termination state is a correct termination state in which the 
workflow has failed to achieve its goals. If an aborted acceptable termination state is reached, all 
undesirable effects of partial workflow execution must be eliminated in accordance with the 
failure atomicity requirements [5–7]. 

Tasks are modeled by their states together with significant events corresponding to 
transitions between states – start, commit, rollback, etc., – which may be enforced, rejected,  
or delayed. Inter-task dependencies, such as ordering dependencies and existence dependencies 
between significant task events, are formally defined using Computation Tree Logic (CTL) and 
have corresponding dependency automata that can be automatically constructed. To address the 
aforementioned characteristics in user tasks, it is advisable, at the first stage, to consider issues 
related to the information space and, specifically, to the formal representation of such a space. 

Research objective. The objective of this work is to develop effective models and methods 
for managing and analyzing task flows within a unified heterogeneous information space, based 
on software agent technology. 

 
Research materials and methods 

 
Development of a model of the distributed system’s information space 
The inf ormation space of a distributed information system can be represented as an 

abstract algebraic system 
,  ,  P O S=< Ω > ,                                                          (1) 

where O  – the objects of the information space; S  – the relationships between objects O ;  
Ω  – the set of operations for manipulating objects within the space P . 

The objects in model (1) can include components of a modern computing system –  
files of all types, directories, logical and physical disks, personal computers, and so  
forth. The relationship is S∈  between the objects of the information space defines  

a specific configuration of the computing environment , ,i i i ip o s q=< > , where ip P∈ , io O∈ , 

iq ∈Ω , oriented towards a specific user or group of users iu U∈ , 1,i N= , where N  is  

the number of users.  



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

145 

Depending on the goals set by the user and the computing environment, all actions  
are performed based on operations from Ω .  

All operations on objects, according to the defined goals, are initiated by a user iu U∈  of 

the information space, following either a formalized action plan ( ) ( ) ( )* * *
1 2, ,...i i imx t x t x t   

or a unitary action ( )*
ix t . 

In the general case, the i -th action plan ( )ix t , if executed as a one-time interaction between 

the user and the information environment (such as viewing the contents of a file, moving a file 
within the computing environment, etc.), can be interpreted as an elementary task  
that a user iu U∈  solves with the help of the information system ( ), ,P O S Ω . 

The result of solving an elementary task ( )ix t  can be defined as a mapping :i i iz x y⇒ , the 

execution of which requires an operation iq , ,i I∈  where iy Y∈  is the solution to the  

task ( )ix t . An elementary task, within the framework of the proposed approach, can be 

represented as ( )( ), , , ,i i i i i iz o s q x t y= . 

Elementary tasks can be combined into functional tasks by merging elementary operations 
into a sequence of interrelated operations forming an algorithm { }1 , ,...k i mA q q q= , 1,i m= , 

kA A∈ , k K∈  where A  is the set of solutions to functional tasks and K  is the number  

of functional tasks. 
Depending on the structure and interdependencies of the tasks solved by the user, they  

can be organized into task flows. A task flow kA A∈  is defined as a sequence of tasks for  

which the following condition is true: ( ) ( )( )ij ij ijy t p x t= , ,i I∈  j K∈ , considering the 

constraint ( ) ( )ij ijx t y t= , ,i j≠  meaning that the result of solving the preceding task  

serves as the input for executing the subsequent task. The interrelationship scheme of subtasks  
in a flow is shown in Fig. 1. 

 

 
Fig. 1. The interrelationship scheme of subtasks in a flow 

 
To implement the interaction technology of a software agent with objects of  

a heterogeneous computational environment, a frame structure can be used as a model of the 
software agent.  

A slot in such a model is a logical construct designed to perform specific tasks assigned to 
the frame – that is, to the software agent. Slots in the frame may be removed, added,  
or reassigned to different functional roles. 

 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

146 

Formal Model of a Software Agent 
Representing the logical model of a software agent in the form of a frame makes it possible 

to effectively apply automata theory for constructing and analyzing the model of agent behavior.  
In general, such a model can be expressed as follows: 

{ }1 11 12 1 2 21 22 2 1,,  ,  ,   ; ,  ,  ,   ,  m m k kmFR R C C C R C C C R C… … ,                          (2) 

where FR  – the name of the frame; ,i iR C  – the i -th slot of the frame; iR  – the slot name;  

iC  – the slot value. 

A slot in model (2) is a logical construct for performing specific tasks of the frame (software 
agent). Slots can be deleted, added, or reassigned. However, in the form (2), the classical slot 
representation as name , value  cannot fully reflect the requirements of a logical  

model of a software agent [8, 9]. 
We modify the structure of the slot and present it in the following form: 

,  ,  ,  ,  ,  iSLOT Y D dom r Q W= ,                                              (3) 

where Y  – a set of attribute names; D  – a set of domains; dom  – a Y D→  mapping;  

ir  – a tuple-model of the agent’s i -th task; W  – a set of operations over relations; { }i ir R= , 

where { }iR  – a set of states of the tuple-model ir ; Q  – a set defining the initial conditions and 

criteria for task execution. 
A slot may be designed using a typical set of attributes 

{ },  ,  ,  Y OBJ ACT CON STA= . Table 1 lists possible basic attribute types. 

 
Table 1. Basic attribute types 

 
Entity Name Description 
OBJECT OBG Database, file, folder, disk, PC 
ACTION ACT Copy, monitor, protect 
CONDITION CON IF–THEN predicate 
STATUS STA 1 – action executed successfully;  

0 – action not executed; 
* – indeterminate result 

 
In the proposed "frame-software agent" model, n  slots form a finite number of internal 

agent states. Each slot solves one task in the information environment and is associated with 
exactly one action. Each action elicits a reaction signal from the environment.  

The behavior of the software agent, consistent with its functional goals, can be implemented, 
for example, using the theory of finite-state machines. 

Example. Task for a software agent. Every day at 18:00, copy the file Itog.txt from directory 
C:\PR to directory C:\ARXIV. The structure of the software agent is shown in Table 2. 

 
 
 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

147 

Table 2. Agent’s structure 
 

OBG CON ACT STA 

C:\PR\Itog.txt Time = 18:00 Copy from C:\PR to C:\ARXIV 1 
 

Network Model for Representing and Analyzing Interrelated Tasks 
As a visual means of representing a task flow, a network model can be proposed.  

It provides a graphical representation of elementary tasks and their interrelations, whose 
execution is required to complete the entire task flow. In this model, the network consists  
of directed arcs connecting pairs of nodes. Arcs (edges) represent elementary tasks  
characterized by computational resource costs. Nodes (depicted as circles) represent events,  
i.e., strictly defined time instants. 

For example, an event may represent the moment when all database operations  
(insert, update, edit) are completed, enabling a file-copy operation into an archive directory. 

Formally, such a task flow can be represented as: 
{ }1 1 2 3 4,  ,  ,  A q q q q= , 

where 1A  – a task flow name; 1q  – a database merge operation; 2q  – an update operation on  

a file attribute; 3q  – a logical operation identifying user exit from edit mode; 4q  – a database file 

copy operation to the archive. Fig. 2 illustrates a fragment of such a network model. 

 
Fig. 2. A network model representing a task flow 
 

Representing the workflow as a node–task model has significant advantages compared to the 
node–event method. Here, nodes represent tasks, and arcs only indicate precedence relations. 
There is no need to introduce the concept of an event, which simplifies network construction. 
Each task is uniquely associated with a node, and task execution is characterized by its duration. 
This approach provides access to important characteristics: 

− earliest start and finish times of tasks; 
− latest start and finish times of tasks; 
− total time reserve. 
A particular interest lies in managing and analyzing information resources with a stochastic 

object structure. This class of problems is analyzed using GERT systems (Graphical Evaluation 
and Review Technique). 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

148 

A stochastic network is defined as one where the execution time of each operation follows a 
probability distribution [10]. Execution of a task at a node is not necessarily required for all 
incoming arcs. Nodes represent system states. Arcs represent transitions between states, 
corresponding to generalized operations defined by execution probabilities and distribution 
densities. Each node in a stochastic network thus performs both input and output functions. 

Example. In a regional emergency management system, decision-support tasks are 
implemented through autonomous scenario analysis of possible emergency cases (Fig. 3). 

 
Fig. 3. A stochastic network example 
 

Node 1: The duty officer receives probabilistic emergency alerts (fires, floods, industrial 
accidents, or false alarms → nodes 2, 3, 5, 4 correspondingly). Probabilities satisfy 

12 13 14 15 1p p p p+ + + = . 
Assume, the situation is classified as a "Fire" by preliminary data, it is leading to scenarios: 

high danger (node 6), medium danger (node 7), or manageable by standard crew (node 8).  
Here 26 27 28 1p p p+ + = . 

The next nodes layer for scenario is build on top of deterministic nodes (bold in the 
diagram). They represent information support tasks, e.g., loading of databases (node 9),  
SQL queries for backup forces and evacuation sites (nodes 10, 11), and assessment of available 
local resources (node 12). By defining network parameters, one can estimate the readiness  
of the emergency system to respond to evolving crises [11]. 

 
High-Level Network Representation of Agent-Oriented Tasks 
The design and operation of automated decision-support systems under strict resource 

constraints face difficulties in guaranteeing required functional and operational properties. 
Existing diagnostic tools mainly provide state monitoring and partial task execution control. 
Performance depends largely on application quality, complicated further by distributed data 
processing and human factors during system design. 

An alternative formalism for systemic situational analysis is Petri nets [13, 14]. Petri nets 
allow modeling of parallel and distributed algorithms, including conflict and undesired scenarios. 
Formally, an algorithm graph scheme is a directed graph: ,  G V E= , where V  – the set of 

vertices and E  – the set of arcs. 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

149 

Vertices are of three types: 
Operator vertices describe actions (including mandatory start and end). 
Choice vertices describe conditional branching ("yes"/"no"), has one incoming and two 

labeled outcoming arcs. 
Auxiliary vertices contain 3 groups: 
− parallel branching (one input → many outputs) describe parallel execution of 

independent actions; 
− parallel merging (many inputs → one output, requiring all); 
− conditional merging (many inputs → one output, requiring any one). 
An important advantage of graph-schemes is that the algorithmic graph-scheme can be 

formally transformed into a Petri net of a special type – namely, a free-choice Petri net. In this 
case, the justification of the correctness of the algorithmic graph-scheme reduces to verifying the 
correctness and safety of the corresponding Petri net. In free-choice Petri nets, each position 
(condition) that enables more than one transition is the sole enabling position for those 
transitions. The structural properties of free-choice Petri nets made it possible to develop 
efficient algorithms for their semantic analysis directly based on the network structure. 

However, modeling control algorithms by means of algorithmic graph-schemes (free-choice 
Petri nets) has a number of significant drawbacks. In a graph-scheme, the algorithmic structure is 
predetermined and does not allow, in particular, dynamic parallelization of a task. Furthermore, 
the graph-scheme of an algorithm does not possess a modular structure, which makes the 
modeling and analysis of large-scale tasks rather difficult. To overcome this limitation, one may 
employ an extension of the standard Petri net formalism – nested Petri nets. 

 
Nested Petri nets in modeling and analysis of complex interrelated processes 
In nested Petri nets, tokens marking positions are regarded as objects possessing 

autonomous behavior, which, in turn, is also described by certain Petri nets. The term  
"nested nets" indicates that elements of the nets themselves are nets, similar to how, in a system 
of nested sets, the elements of a given set may themselves be sets. Nested Petri nets are 
convenient and powerful tool for modeling and analyzing hierarchical multi-agent distributed 
systems. They possess an inherent mechanism of modularity. Modular Petri nets can be 
considered as a special case of nested Petri nets. 

Compared with other extensions of the Petri net formalism, owing to the concept of object 
and it’s construction, nested Petri nets preserve such important properties of standard Petri  
nets as simplicity, clarity of representation, and decidability of certain properties crucial  
for verification [14]. 

A nested Petri net consists of a system (root) net and a set of element nets representing the 
tokens of the system net.  

In the simplest case of a two-level nested net, the element nets are ordinary Petri nets, in 
which tokens, as usual, are depicted as black dots, have no internal structure, and are 
indistinguishable from one another. 
 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

150 

The behavior of a nested Petri net involves four types of steps: 
Transfer step: firing of a transition in the system net according to the standard rules for high-

level Petri nets, where element nets are treated as tokens without internal structure. A transfer 
step may move, create, or remove objects, but cannot alter their internal state. 

Element-autonomous step: alters only the internal state (marking) of an element net without 
changing its location in the system net. This step is also executed according to the standard 
transition-firing rules of a Petri net. 

Horizontal synchronization step: simultaneous firing of two transitions in two element  
nets located within the same position of the system net. Transitions that must fire  
synchronously are marked with mutually complementary labels from a special set of labels  
for horizontal synchronization. 

Finally, Vertical synchronization step: used to synchronize a transition in the system net 
with certain transitions of the element nets. Transitions that must fire synchronously are labeled 
with marks from a special set of vertical synchronization labels. In this case, the label of  
a transition in the system net and the label of the corresponding transition in the element net  
must be mutually complementary.  

The element nets that are moved from the preconditions of the transition in the system net 
during its firing are called the engaged element nets. Vertical synchronization thus means 
simultaneous firing of the transition in the system net and the transitions (marked with 
complementary labels) in the engaged element nets. 

When solving problems of controlling distributed multi-agent systems, the complexity of 
control algorithms increases substantially, which in turn raises the importance of modeling 
various scenarios of system behavior under different management strategies. This creates the 
need for tools capable of building illustrative models of such systems’ behavior and supporting 
automatic verification of their semantic (behavioral) properties. 

Nested Petri nets possess the following properties that make them a convenient tool for 
modeling and analyzing control algorithms in multi-agent systems: 

− they feature a hierarchical and modular structure, which allows the model to clearly 
reflect the hierarchical and modular structure of the algorithm; 

− element nets in a nested Petri net have their own structure and behavior, making them 
well-suited for modeling agents in a multi-agent system; 

− horizontal synchronization of element nets corresponds to agent-to-agent interaction, 
while vertical synchronization models agent actions that modify the state of the environment 
external to those agents. 

From the foregoing, it follows that nested Petri nets offer sufficiently rich expressive 
capabilities.  

At the same time, being an extension of standard Petri nets, they preserve their advantages 
of simplicity and clarity of representation. Moreover, for nested Petri nets, certain properties 
essential for verification remain decidable [15]. 
 
 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

151 

Research Results 
 

Hierarchy of Networks of Interconnected Subtasks with Variable Structure 
Let us consider the specific aspects of constructing networks and managing the dynamics of 

modeling data processing processes through the use of a combination of modified predicate nets 
and modified E-nets. Taking into account the known difficulties in interpreting  
and modeling data processing processes using predicate nets, it is deemed expedient to apply  
the following modification of nets: 

{ } 0,  ,  ,  ,  ,  ,  ,  PR t sS P T F A C V K M= ,                                 (4) 

where P  – a set of positions; T  – a set of transitions; F  – an incidence function between 
positions and transitions; C  – a color function of tokens; tA  – a time parameter assigned to all 

network components 0,  ,  ,P T F M ; sV  – an enabling condition of transitions kt T∈ , k K∈  

related to the network components: I
kp

V  – an enabling condition with respect to its input 

positions; O
kp

V  – a condition of enabling kt T∈ , k K∈  with respect to its output positions;  

kt
V  – an enabling condition kt T∈ , k K∈  directly related to the transition; 

lMpV  – an enabling 

condition kt T∈ , k K∈  related to the marking of the incident positions, l L∈ ; FV  – an 

enabling condition kt T∈ , k K∈  associated with the arcs between input/output positions; K  – 

the token capacity of positions considering C ; 0M  – the initial marking vector. 

The enabling condition of transition SV  also includes such properties as reliability, 

complexity, cost, and the degree of credibility of a specific event.  
The analysis of possible solutions has demonstrated that, for the net (4), in the tasks  

of modeling subprocesses based on S ′  networks, it is advisable to apply interpreted 
metapositions. This is due to the fact that the positions themselves interpret the enabling 
conditions of the actions of simulated events and, at the same time, define the state space  
of the model [16–18]. 

Example. A resource of type 1A  is provided by information support and stored in database 

files, e.g., 11 12 1, ,   , ,nB B B n N… ∈  where N  is the number of databases. The search condition 

for the considered fragment of a decision-support system is formulated as follows: to determine 
the specified quantity of resource type *

1 1A A=  over the set { }11 12 1, ,   ,nB B B n N… ∈ .  

The search of a solution is performed through two types of actions: at the first step, a SEARCH 
over database 1B  is executed; if the condition is not satisfied, a UNION of databases 1B  and 2B  

is carried out and the search is repeated.  
The procedure of searching and merging databases can be carried out in terms of the 

Structured Query Language (SQL), using the SELECT, JOIN, and INSERT options: 
 
SELECT * 
FROM b1 
JOIN b2 ON b1.id = b2.id; 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

152 

Let us represent a fragment of the above problem in the form of a modified predicate  
Petri net S (Fig. 4).  

 
 

 
Fig. 4. S Petri net 

 
The set of positions { }0 1,  p p  interpret, respectively, the input and output conditions of 

executing the action represented by transition 0t . The set of positions { }1 2,  p p  interpret, 

respectively, the input and output conditions of executing action 1t .  

The initial marking vector ( )0 1,  0,  0M =  defines the initial state space of the net. 

Description of the main constraints shown in Fig. 4. I
kp

V  is the input condition of transition 

1t T∈ , k K∈ ; O
kp

V  is the output condition of transition 1t . If the input condition I kk
tp

V V≠   

of transition 1t  is not satisfied, then for the given transition 1t T∈ , k K∈ , a subordinate  

net ( )S ′  is generated (Fig. 5), where position 1p  serves as a metaposition. 

The initial marking vector ( )0 1,  0,  0,  0M =  defines the initial state space of this 

subordinate net. The marking of position 13p  and the execution of transition 13t  lead to the 

marking of the metaposition 1p , which activates the execution of S  net. 

 

 
 
Fig. 5. S  Petri net with an S ′  extension 
 

If the desired solution cannot be obtained by the means of S S ′∪ , a hierarchy of tasks is 
constructed based on searching for solutions from the set { }11 12 1, ,  nB B B… , n N∈  through 

merging databases and extending the S ′  net. 
Let us present the above problem as a conceptual task for a software agent: 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

153 

Table 3. Structure of the software agent "AGENT" 
 
 

ID OBG: CON: ACT: STA: 

S1 C\BASE\b1.mdb Time=10-
00 

Select sum([A1]) from 
b1.dbf 

IF A1=A1* is TRUE END 
ELSE S2 

S2 C\BASE\b1, 
b2.mdb *** 

Join b1, b2 into b1;  
Select sum([A1]) from 

b1.dbf 

IF A1=A1* is TRUE END 
ELSE S3 

S3 C\BASE\b1, b2, 
b3.mdb *** 

Join b1, b2, b3 into b1;  
Select sum([A1]) from 

b1.dbf 

IF A1=A1* is TRUE END 
ELSE END 

 
The software agent "AGENT" implements the task execution as a sequence of three consecutive 

actions in the form of operations 1S , 2S , and 3S  with databases 1b , 2b , and 3b . If the task 
condition 1 1A A ∗=  is satisfied at stage 1S , the overall task is considered completed. Otherwise, an 
operation is executed in the form of merging two databases ( 1b  and 2b ), and the query with condition 

1 1A A ∗=  is repeated, and so on, for up to three iterations. The software agent technology proposed in 
this paper allows one to successfully and efficiently solve a complex of tasks of managing and 
analyzing information within a unified heterogeneous information space. 

 
Conclusions 

 
As a result of the analysis of methods for managing information resources in corporate 

systems, an approach to the representation of agent-oriented tasks has been considered, based  
on analyzing the state of the external environment and the state of the information system.  
Two main methods of representing agent-oriented tasks have been investigated: state-based 
planning and task-based planning. The specifics of managing the state space and the structure of 
modified predicate nets have been analyzed in the context of hierarchical interaction of tasks.  

The results obtained can be extended to a certain hierarchy of subordinate nets, taking into 
account their features and the necessity of generating metapositions and metatransitions.  
The proposed approach makes it possible to reduce time and computational resources through 
the activation of subordinate tasks, identification of stable dependencies, and exclusion  
of irrational and unsatisfactory solutions from consideration. 

 
References 

 
1. Wooldridge, M. (2002), "An Introduction to Multi-Agent Systems". John Wiley & Sons Ltd, 366 p. 
2. Ponomarenko, L. A., Tsybulnyk, Ye. Ye., Filatov, V. A. (2023), "Agent technologies in information 

search and decision-making tasks". USiM: Control systems and machines, No. 1, P. 36–41. 
3. Nagata, T., Ohono, M., Kubokawa, J., Sasaki, H., Fujita, H. (2002), "A multi-agent approach to unit 

commitment problems". Proc. IEEE PES Winter Meet., P. 64–69. 
4. Filatov, V. O., Yerokhin, M. A. (2023), "Improved multiobjective optimization in business process 

management using R-NSGA-II". Radio Electronics, Computer Science, Control, No. 3(187). 
DOI: https://doi.org/10.15588/1607-3274-2023-3-18 

https://doi.org/10.15588/1607-3274-2023-3-18


 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

154 

5. Konios, A., Khan, Y. I., Garcia-Constantino, M., Lopez-Nava, I. H. (2023), "A Modular Framework 
for Modelling and Verification of Activities in Ambient Intelligent Systems". Lecture Notes in Computer 
Science, Vol. 14029. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-35748-0_35 

6. Pokorný, J., Richta, K., Richta, T. (2018), "Information Systems Development via Model 
Transformations". Lecture Notes in Computer Science, Vol. 10751. Springer, Cham. 
DOI: https://doi.org/10.1007/978-3-319-75417-8_63 

7. Ziegler, P., Dittrich, K. R. (2007), "Data Integration". Problems, Approaches, and Perspectives, Conceptual 
Modelling in Information Systems Engineering, P. 39–58. DOI: 10.1007/978-3-540-72677-7_3 

8. Nagata, T., Nakayama, H., Utatani, M., Sasaki, H. (2002), "A multi-agent approach to power system 
normal state operation", Proc. IEEE/Power Eng. Soc. General Meeting, Vol. 3, P. 1582–1586. 

9. Solanki, J. M., Khushalani, S., Schulz N. N. (2007), "A multi-agent solution to distribution systems 
restoration". IEEE Trans. Power Syst., Vol. 22, No. 3, P. 1026–1034. 

10. Martin, N., Depaire, B., Caris, A. (2016), "The use of process mining in business process simulation model 
construction: structuring the field". Business & Information Systems Engineering, Vol. 58, No. 1, P. 73–87. 

11. Pourbafrani, M., Jiao, S., van der Aalst W. M. P. (2021), "SIMPT: Process improvement using interactive 
simulation of time-aware process trees". Proceedings of RCIS 2021, Lecture Notes in Business 
Information Processing (LNBIP), P. 588–594. 

12. Girault, C., & Valk, R. (2003), "Petri Nets for Systems Engineering". Springer Berlin Heidelberg. 
DOI: https://doi.org/10.1007/978-3-662-05324-9 

13. Murata, T. (1989), "Petri nets: Properties, analysis and applications". Proceedings of the IEEE, No. 77(4), 
P. 541–580. DOI: https://doi.org/10.1109/5.24143  

14. Medina-Garcia, S., Medina, J., Montaño, O., Gonzalez-Hernandez, M., Hernánndez Gress, E. (2023),  
"A Petri net approach for business process modeling and simulation". Applied Sciences, Vol. 13, 11192. 
DOI: 10.3390/app132011192 

15. Alves, F., Merlim, R., de Carvalho, L., Souza, F. (2023), "BPMN and Petri Nets: A case study of process 
optimization in a project engineering company". Proceedings of the 7th International Academic Research 
Conference on Engineering, IT and Applied Sciences. DOI: 10.33422/7th.iarmea.2023.07.124 

16. Qin, J., Zhao, N., Xie, Z., et al. (2017), "Business Process Modelling based on Petri nets". MATEC Web of 
Conference, Vol. 139, No. 1, P. 105–113. 

17. Li, Z., Ye, Z. (2021), "A Petri Nets Evolution Method that Supports BPMN Model Changes". Scientific 
Programming, Vol. 2021, Issue 3, P. 1–16. 

18. Van Hee, K. M., Sidorova, N., van der Werf, J. M. (2013), "Business process modeling using Petri nets". 
Transactions on Petri Nets and Other Models of Concurrency VII, Vol. 7480, P. 116–161.  
DOI: https://doi.org/10.1007/978-3-642-38143-0_4 

19. Kucherenko, I., Filatov, V. O. (2004), "Decision-making models in complex systems analysis problems 
based on high-level networks". Information processing systems, No. 5, P. 139–148. 

 
Received (Надійшла) 19.08.2025 

Accepted for publication (Прийнята до друку) 07.11.2025 
Publication date (Дата публікації) 28.12.2025 

 
 

About the Authors / Відомості про авторів 
 

Filatov Valentin – Doctor of Sciences (Engineering), Professor, Kharkiv National University of Radio 
Electronics, Professor of Artificial Intelligence Department, Kharkiv, Ukraine; e-mail: 
valentin.filatov@nure.ua; ORCID ID: https://orcid.org/0000-0002-3718-2077 

https://doi.org/10.1007/978-3-031-35748-0_35
https://doi.org/10.1007/978-3-319-75417-8_63
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/978-3-642-38143-0_4
mailto:valentin.filatov@nure.ua
https://orcid.org/0000-0002-3718-2077


 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

155 

Chernenko Mykola – PhD (Engineering Sciences), Kharkiv National University of Radio Electronics, 
Assistant of Artificial Intelligence Department, Kharkiv, Ukraine; e-mail: mykola.chernenko@nure.ua;  
ORCID ID: https://orcid.org/0009-0006-0623-5056 

 
Філатов Валентин Олександрович – доктор технічних наук, професор, Харківський 

національний університет радіоелектроніки, професор кафедри штучного інтелекту, Харків, Україна. 
Черненко Микола Володимирович – кандидат технічних наук, асистент кафедри штучного 

інтелекту, Харківський національний університет радіоелектроніки, Харків, Україна. 

 
ПІДТРИМКА ЗАВДАНЬ КОРИСТУВАЧА В ІНФОРМАЦІЙНИХ 

СИСТЕМАХ НА ОСНОВІ АГЕНТНИХ ТЕХНОЛОГІЙ 
 

Предметом роботи є застосування мультиагентних систем і технологій програмних агентів для 
управління й аналізу інформаційних ресурсів і потоків завдань у розподілених гетерогенних 
інформаційних середовищах. Розглянуто формальні моделі та межі виконання, що забезпечують 
інтелектуальний контроль складних агентно-орієнтованих робочих процесів. Мета дослідження – 
розробити ефективні методи й моделі подання, координації та виконання агентно-орієнтованих 
завдань, що гарантують коректність і ефективне використання ресурсів у розподілених системах.  
Завдання: формалізація інформаційного простору як алгебраїчної системи; визначення 
елементарних і функціональних завдань; організація взаємозв’язків між ними в потоки завдань; 
моделювання поведінки агентів за допомогою структур фреймів та ієрархічних мереж Петрі з 
метапозиціями й метапереходами. Методи основані на формальному моделюванні інформаційного 
простору, впровадженні теорії автоматів для аналізу поведінки агентів, використанні розширених 
предикатних мереж Петрі з метою підтримки ієрархічного управління завданнями, а також на 
застосуванні логіки обчислювального дерева (CTL) й автомата залежностей для формального 
визначення взаємозалежностей і вимог до узгодженості виконання. Як приклад, використано 
операції SQL для ілюстрації злиття баз даних у процесі виконання завдань. Результати дослідження 
передбачають: формалізовану структуру завдань агентів із чітким розмежуванням планування в 
просторі станів і завдань, удосконалену модель слотів у фреймі для комплексного опису атрибутів 
завдань, ієрархічний каркас мереж Петрі з підлеглими мережами для оптимізації обчислень і 
реалізацію програмного агента, який послідовно виконує умови із злиттям баз даних для досягнення 
цілей. Це дає змогу скоротити час виконання й обчислювальні ресурси внаслідок активації тільки 
необхідних підзавдань і вилучення неефективних рішень. Висновки підтверджують, що запропоновані 
модель і методи ефективно розв’язують складні завдання управління розподіленими інформаційними 
ресурсами й контролю робочих процесів, забезпечуючи масштабованість, надійність й атомарність 
виконання в мультиагентних системах гетерогенних обчислювальних середовищ.  

Ключові слова: мультиагентні системи; ієрархічне управління завданнями; мережі Петрі;  
управління інформаційними ресурсами. 

 
 

Bibliographic descriptions / Бібліографічні описи 
 
Filatov, V., Chernenko, M. (2025), "User task support in information systems based on agent 

technologies", Management Information Systems and Devises, No. 4 (187), P. 142–155. 
DOI: https://doi.org/10.30837/0135-1710.2025.187.142 

Філатов В. О., Черненко М. В. Підтримка завдань користувача в інформаційних системах на 
основі агентних технологій. Автоматизовані системи управління та прилади автоматики. 2025.  
№ 4 (187). С. 142–155. DOI: https://doi.org/10.30837/0135-1710.2025.187.142 

mailto:mykola.chernenko@nure.ua
https://orcid.org/0009-0006-0623-5056

	About the Authors / Відомості про авторів
	Bibliographic descriptions / Бібліографічні описи

