
 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187) 
 

©   Lapin M., Bokhan K., 2025 

103 

UDC 004.8 DOI: https://doi.org/10.30837/0135-1710.2025.187.103 
 
M. Lapin, K. Bokhan 

 
 

FEW-SHOT LEARNING OF A GRAPH-BASED  
NEURAL NETWORK MODEL WITHOUT BACKPROPAGATION 

 
The subject of this article is a structural graph approach to classifying contour images in few-shot mode without 
using backpropagation. The core idea is to make the structure the carrier of explanations: the image is encoded as an 
attributive graph (critical points and lines as nodes with geometric attributes), and generalization is performed through 
the formation of concept attractors. The purpose of the study is to design and experimentally validate  
an architecture in which class concepts are formed from several examples (5–6 per class) by means of structural and 
parametric reductions, ensuring transparency of decisions and rejection of backpropagation of error. Objectives  
of the work: 1) define a vocabulary of nodes/edges and a set of attributes for contour graphs; 2) set normalization and 
invariance; 3) develop structural and parametric reduction operators as a monotonic simplification  
of the structure; 4) describe the procedure for aggregating examples into stable concepts; 5) build a classification 
through graph edit distance (Graph Edit Distance) with practical approximations; 6) compare with representative 
learning approaches on several examples. Methods used. Contour vectorization → bipartite graph (Point/Line as 
nodes); attributes: coordinates (normalized), length, angle, direction, topological degrees. Reductions: elimination  
of unstable substructures or noise, alignment of paths between critical points. Concepts are formed by iterative 
composition of samples; classification is based on the best match of the concept graph (GED with approximations). 
Results of the study. On a MNIST subset with 5–6 basic examples per class (one epoch), a consistent accuracy  
of approximately 82% was obtained with full traceability of solutions: errors are explained by specific structural 
similarities. An indicative comparison with SVM/MLP/CNN, as well as metric (ProtoNet) and meta-learning 
(MAML) lines, is presented in the form of a review graph. Conclusions. The structural graph scheme with concepts 
enables learning from multiple examples without backpropagation of error and provides built-in explanations through 
an explicit graph structure. Limitations relate to the cost of GED and the quality of skeletonization. Research prospects 
include optimization of classification algorithms, work with static scenes, and associative recognition. 

Keywords: explainable artificial intelligence; few-shot machine learning; backpropagation; graph reduction. 
 

Introduction 
 

Recent advances in artificial intelligence (AI), particularly in deep learning and artificial 
neural networks (ANNs), have led to significant progress in solving complex problems [1–3]. 
However, the widespread use of these technologies has revealed a number  
of fundamental limitations that call into question the possibility of creating truly autonomous  
and adaptive systems [4–6]. 

These limitations include: the need for massive amounts of data for training, which requires 
significant time, computational, and energy resources [7, 8]; fundamental problems  
with generative models related to trust in information, "hallucinations", and the phenomenon  
of "entropy gap" [4, 7, 9]; and model degradation when training on recursively generated data 
(model autophagy disorder, MAD) [10, 11].  
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In this work, we assume that these problems are fundamental in nature, stemming from  
the current conceptual paradigm. Modern MLMs are based primarily on the statistical nature  
of learning and a rigid architecture that is optimized using the backpropagation algorithm [2, 3, 6]. 

Even specialized approaches to few-shot learning, such as meta-learning  
(MAML, Prototypical Networks) [12–14], are essentially complex methods of statistical 
optimization. They do not eliminate the fundamental dependence on statistics and cannot truly 
learn "from scratch" on a few examples, as they rely on models pre-trained on large data sets  
or require a complex meta-learning step. 

This paper considers an alternative approach based on abandoning backpropagation in favor 
of biologically motivated structural generalizations. This paper presents a practical computational 
implementation of such an approach.  

We demonstrate how visual patterns (contour images) can be represented as attributed graphs 
[15–17], where nodes (critical points, lines) and edges (spatial connections) encode the topological 
and geometric properties of an object. 

The learning process is implemented as single-pass few-shot learning without 
backpropagation. It is based on the application of structural and parametric reduction operators, 
which operate by monotonic structural simplification. Iterative application of these operators  
on 5–6 unique samples causes the system to converge to a stable, generalized state with minimal 
structural complexity – a generalized concept graph (or prototype graph). 
 

Analysis of recent studies and publications 
 

The development of structural graph models for learning from a few examples lies at the 
intersection of several key research areas: few-shot learning [14], explainability methods (XAI) 
[18, 19], graph representations (GED) [20, 21], and alternative architectures (OvA/OvO) [22].  
A review of the literature in these areas reveals fundamental conceptual limitations that the 
proposed approach aims to address [7, 23–25]. 

Few-shot/Meta-learning 
The dominant deep learning models (CNN, MLP, Transformer) are fundamentally statistical 

and demonstrate low efficiency when trained on critically small datasets, requiring thousands  
of examples and many training epochs to achieve acceptable accuracy. To solve this problem, few-
shot and meta-learning methods have been proposed [2, 7, 14, 26]. 

Prototypical Networks learn to identify class prototypes based on distance metrics in 
embedding space [13]. MAML (Model-Agnostic Meta-Learning) attempts to find the optimal 
initial weight initialization for fast adaptation [12]. Although both methods significantly improve 
accuracy on small samples, they do not eliminate the fundamental dependence on statistics  
and backpropagation.  

They require a complex and resource-intensive meta-learning phase on large  
auxiliary datasets [14, 26].  

Thus, this is a transfer of knowledge obtained statistically, rather than true one-pass  
learning "from scratch". 
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Explainable AI (XAI) and Graph Representations 
As models have grown in complexity, the problem of their interpretability has become more 

acute. Deep learning models function as "black boxes". Popular XAI methods, such as LIME  
and SHAP, are post-hoc techniques: they attempt to approximate the behavior of an already trained 
model rather than explain its actual decision-making process [27, 28]. Studies have shown that 
such explanations can be unreliable, contradictory, and vulnerable to adversarial attacks [18, 19, 
29, 30]. 

An alternative is "explainability by design", where the internal representation of the model  
is semantically meaningful [16, 18, 19]. Graph structures are ideal candidates for this  
because they allow semantics to be explicitly encoded in nodes and edges. Graph Edit  
Distance (GED) [20, 21] is used to compare such structures. However, GED is  
an NP-hard problem, which remains a challenge for practical application [31, 32]. 

Alternative architectures (OvA/OvO) and the problem of feature generalization 
To solve classification problems, alternative ANN architectures have long been considered: 

"one-vs-all" (OvA) and "one-vs-one" (OvO) [22]. This is an approach where, instead of one large 
network, specialized networks are used (for example, one for each class). This approach is 
conceptually similar to the one we propose, where we build a single separate "neuron"  
(concept graph) for each class. 

However, in classical implementations of One-vs-All / One-vs-One architectures 
(OvA/OvO), which rely on the backpropagation algorithm, there are noticeable limitations in 
detecting examples that go beyond the boundaries of the training data. One-vs-One, OvA/OvO) 
architectures, which rely on the backpropagation algorithm, there are noticeable limitations in 
detecting examples that fall outside the training distribution (Out-of-Distribution  
Detection, OOD) [33, 34]. Networks trained on limited examples do not form stable  
class separation boundaries.  

This is because traditional ANNs generalize only local recognition features  
(e.g., individual textures or angles) and cannot generalize features at the level of the entire structure 
[23, 24]. Their fully connected and combinatorial nature with stochastic initialization makes it 
impossible to generalize global topological properties. Our approach  
solves this problem because generalization occurs not through stochastic optimization of local 
weights, but through deterministic structural reduction of the graph, which captures  
global topological features.  

Synthesis: Identified conceptual gaps 
A review of the literature reveals three distinct but interrelated problems: 
1. Dependence of few-shot learning methods on the backpropagation algorithm: Leading few-

shot methods (MAML, ProtoNets) are not true "zero-shot" learning, but rather knowledge transfer 
methods that require intensive prior training using backpropagation. 

2. Unreliability of XAI: Existing XAI methods (LIME, SHAP) remain mostly post-hoc, 
unreliable, and vulnerable to attacks. 

Feature locality in OvA: Classical architectures (including OvA/OvO) are unable to generalize 
global/structural features, leading to OOD problems and unstable decision boundaries 
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Research gaps, Purpose and Objectives 
 

Research gaps 
1. Reliability of explanations: Approaches with "by design" explainability are needed, rather 

than post-hoc approximations (LIME/SHAP). 
2. Training on multiple examples without backpropagation: Leading methods (MAML, 

ProtoNets) still rely on gradient updates. Alternatives are needed that work in low-data  
modes without backprop. 

3. Generalization of global features: Classical ANNs (including OvA) capture local patterns 
but are not capable of generalizing global topological structure, which is key  
to shape recognition. 

4. GED complexity: Graph edit distance (GED) is NP-hard, which limits its  
practical application. 

The purpose of the work is to develop and experimentally validate a structural  
graph approach to few-shot classification of contour images without backpropagation,  
in which the generalization of several class examples is performed through a sequence  
of structural and parametric reductions, and decision-making has built-in explainability due to the 
explicit graph structure. 

Objectives 
1. Representation. Define the representation of a contour image as an attributed graph 

(node/edge types, geometric attributes, normalization, and invariance) taking into account 
skeletonization/vectorization properties. 

2. Reduction operators. Develop a set of structural (removal of unstable branches, merging of 
intersections, normalization of paths) and parametric (min-max-center ranges  
for numerical features) operators that simplify the set of examples into a concept attractor. 

3. Aggregation of examples. Build a procedure for forming a concept from 5–6 examples per 
class in few-shot mode, fixing attribute tolerances and filtering random structures. 

4. Classification. Design a concept matching scheme (GED with heuristics based  
on bipartite matching/local searches) with strict time and quality constraints. 

5. Experimental protocol. Conduct tests on a subset of MNIST/similar contour sets:  
one epoch, 5–6 basic examples/class (+augmentations); evaluate accuracy, concept stability, 
computation time. 

6. Comparison with FSL databases. Compare with representative methods (Prototypical 
Networks, MAML) as examples of metric and meta-learning approaches; provide  
an indicative graph (caution regarding different protocols). 

Explainability and risks. Explicitly record structural subgraphs/attributes that support 
decisions; compare with post-hoc explanations and discuss limitations of applicability  
(when structure "does not explain"). 
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Materials and Methods 
 

This section describes in detail the methodological pipeline used to convert two-dimensional 
contour images into stable concept graphs and their subsequent classification. The methodology is 
based on the principles of structural generalization and rejects gradient optimization. 

Representation of contours as attributed graphs 
To achieve transparency and move away from the "opaque" weight matrices characteristic  

of traditional neural networks, a representation is proposed where "structure is the carrier  
of explanations".  

The input contour image, obtained after the binarization and skeletonization stages,  
is transformed into an attributed graph. 

The system encodes contours as bipartite graphs, whose structure strictly alternates between 
Point type nodes and Line type nodes. This architectural differentiation is fundamental because it 
allows the topological structure (critical points) to be clearly separated from the geometric 
properties (the segments that connect them). 

Point nodes: Represent the topological structure and critical points of the contour.  
They are ontologically classified into four main types: 

· EndPoint: Terminal nodes that mark the beginning or end of an open contour. 
· CornerPoint: Nodes that mark sharp changes in direction (corners). 
· IntersectionPoint: Nodes where three or more segments meet. 
· StartPoint: A designated anchor node that defines the canonical starting point of the graph 

traversal to ensure consistency of comparisons. 
Line nodes: Represent geometric properties. Importantly, line segments are represented  

as first-class nodes rather than edges. This allows them to be assigned rich semantic  
and geometric attributes on par with Point nodes, which is critical for subsequent  
parametric reduction operations. 

Edges (Interconnections): Point and Line nodes are connected exclusively by bidirectional edges 
of type CONNECTED_TO. This creates a strict traversal pattern Point → Line → Point → …  

Each node carries a set of attributes that encode measurable geometry and topology 
parameters, including: normalized_x, normalized_y (coordinates normalized to the invariant range 
[-1, 1]), length (segment length), angle (angle for CornerPoint), quadrant (discretized direction), 
horizontal_direction, and vertical_direction. 

Invariance through normalization 
To ensure invariance of representation to scale and shift, which is a necessary condition for 

the formation of stable attractors, all coordinates and related metrics (e.g., length) are normalized. 
Point coordinates are transformed into a centered system with a range of [-1, 1] using the formula: 

( ) /x x xnormalized x center center= − . 

A similar formula is applied to .y  

This process is the first step in parametric reduction ( ,u cR ), which converts absolute values 

specific to a particular instance into relative, generalized parameters.  
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The learning process as a structural reduction of a graph 
The learning process (concept formation) in this work is fundamentally different from 

traditional statistical optimization (e.g., gradient descent along the loss function). It is viewed as  
a deterministic process of structural generalization that strives for a state of minimal structural 
complexity. This most stable, generalized state of the system, representing the invariant essence 
of the class (e.g., all variants of writing the Fgure "3"), is called a generalized concept graph. 

The transition from a set of individual sample graphs ( 1,  ,  nG G… ) to a single concept  

graph C is a process of controlled simplification (reduction) of the structure. This process is 
controlled by a set of special reduction operators (Custom Reduction Operations, CRO), which act 
by reducing structural complexity or parametric variability, attempting to simplify the graph to  
a stable prototype in a finite number of steps.  

The general reduction process can be described as a composition of three classes  
of operators:  

( )( )( ),w sp u c inputR R R R G= , 

where inputG  – input graph; 

,u cR , spR , wR  – theoretical reduction operators. 

A key aspect of our methodology is the direct comparison of these theoretical operators  
with specific CRO algorithms implemented in the system, as detailed in Table 1. 

 
Table 1. Structural and parametric reduction (CRO) operators 
 

Theoretical 
Operator 

Name and Purpose Practical 
Implementati

on (CRO) 

Algorithm Details 

,  u cR
(Parametric 
Reduction) 

Minimization of 
parametric variability. 
Transition from 
quantitative values to 
generalized qualitative 
ranges. 

Parametric 
Generalization 

Numeric properties 1, , nv v… :  
merge into a rang 

( ) ( ) ( ): min , : max , : avgi i imin v max v center v ; 
this generalizes variations  
(e.g., length, angle).  
Categorical properties 1, , ns s… :  
merge into 1s  only if 1is s=  for all i ; 
otherwise, the attribute is removed 
(filtering of inconsistent parameters).  
List properties 1, , nL L… : merge due to 
the intersection of sets 1 nL L∩…∩ ; this 
preserves only universal labels (e.g., 
Point).  

 spR  
(Structural-
Parametric 
Reduction) 

Simplification 
(reduction) of the 
structure based on the 
stability of its 
parameters. 

Path Pruning For two aligned critical points, the 
algorithm finds all simple paths 
between them. It selects the "best 
match" of paths based on the similarity 
of nodes and uses the shorter path as  
a template. Nodes from the longer path 
that do not have a match are removed. 
This "eliminates length variations". 
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Continuation of the table 1 
 

Theoretical 
Operator 

Name and Purpose Practical 
Implementati

on (CRO) 

Algorithm Details 

wR   
(Structural 
Reduction) 

Removal of topological 
elements that are 
statistically insignificant 
(noise). 

Endpoint 
Removal and 
Intersection 

Point Merging 

Endpoint removal: The algorithm 
calculates the similarity matrix of 
endpoints between the concept iC  and 
the sample 1iG + . Endpoints with low 
similarity (below the threshold) or 
"extra" points are removed along with 
the entire path to the nearest critical 
point. 
Intersection merging: Consolidates 
IntersectionPoint nodes representing 
the same structural feature. Applies 
semantic reduction  
(e.g., IntersectionPoint with a degree < 2 
becomes CornerPoint or EndPoint).  

 
Iterative algorithm for attractor formation 
The learning process is one-pass and does not require backpropagation of error.  

It iteratively builds an attractor based on a very small sample consisting of 5–6 unique  
training samples per class. 

The concept is initialized with the first sample graph: 0 1C G= . This sample acts as an initial 

hypothesis about the class structure. Each subsequent sample 1iG +  is integrated into the current 

concept iC  using a reduction operation ( )1 1,i i iC CRO C G+ += . 

Each operation CRO  is a five-step process that applies the reduction operators from Table 1: 
1. Alignment of starting points: Establishing a common origin for graph traversal iC   

and 1iG +  by clustering and selecting StartPoint.  

2. Preprocessing of critical points: Applying structural operators wR  (Endpoint removal, 

Intersection merging) to achieve basic structural compatibility. 
3. Traversal synchronization: Generating synchronized paths between corresponding critical 

points in both graphs. 
4. Common structure identification: Applying a structural-parametric operator spR   

(Path pruning) to normalize paths and eliminate length variations between critical points. 
5. Parametric merging: Application of a parametric operator ,u cR  (Parametric 

Generalization) to merge node attributes that remain after structural reduction. 
This iterative process is path-dependent; the order in which samples are submitted affects the 

final concept graph. This mimics a process where the initial hypothesis ( 1G ) is iteratively refined 

under the influence of new data ( 1iG + ), which acts as a reduction force, eliminating sample-specific 

variations (noise) and leaving only the generalized core. 
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Classification through approximate graph matching (GED) 
The classification (inference) process consists of comparing the graph testG  obtained from  

an unknown input image with each concept graph kC  from the trained library, minimizing the 

graph edit distance (GED) to the input graph testG : 

( ) ( )arg min ,test test kk
Class G GED G C= . 

GED is defined as the minimum cost of a sequence of operations (insertion, deletion, 
replacement of nodes/edges) required to transform testG  into kC . 

In order for the GED metric to correctly take into account the generalized nature  
of concepts, we use our own cost functions. 

Node Substitution Cost: The cost of substitution a node testv G∈  with a node ku C∈  is 

calculated based on range-based cost functions.  
• For numerical attributes (e.g., length , angle ): If the attribute v  value (e.g., 5.5lengthv = ) falls 

within the trained attribute u  range (e.g., { }: 4, : 7,lengthu min max= … ), the substitution cost for this 

attribute is 0. If the value is outside the range, the cost is proportional to the distance to the nearest 
range boundary. 

• For categorical attributes: The cost is 0 in case of exact match or infinite (high) in case  
of mismatch. 

• Label compatibility: The replacement cost is infinite if the base node types are 
incompatible (e.g., Line to Point). 

Edge editing cost: Reduced cost to prioritize topological differences (presence/absence  
of nodes) over connectivity differences. Calculating the exact GED is an NP-hard problem.  
To ensure practical applicability, an approximation is used via a hard 60-second timeout for each 
individual comparison ( ),test kGED G C .  

This timeout acts as a heuristic approximation that interrupts the search for the optimal editing 
path if it takes too long and returns the best distance found at that moment.  

Classification and winner selection mechanism 
The proposed architecture implements an approach that is conceptually similar  

to One-vs-All, where each class k  is represented by a separate "neuron" that is a generalized 
concept graph kC . The classification (inference) process consists of comparing the contour  

in the form of a graph iG  with each concept graph kC  from the trained library. 

Unlike stochastic networks, where the "excitation" of a neuron is a numerical output  
(e.g., softmax), in our system, the "excitation" of a k -th neuron is the process of calculating  
the editorial distance ( ),test kGED G C . To select the final classification result, we apply the Winner-

Takes-All concept.  
The winner is the class (concept) kС  with the smallest editorial distance from  

the input graph ( testG ).  

 ( ) ( )1{ )}arg min , , , ( ,test test test Nk
Class G GED G C GED G C= … . 
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If the distance is the same for several classes, the conflict resolution rule is applied.  
The class that is structurally more complex is selected.  

Complexity is calculated as the sum of the nodes and edges of the graph (Fig. 1).  
 

 
 

Fig. 1. Classification scheme using GED and WTA 
 
 

Results and discussion 
 
This section presents empirical validation of the proposed graph-based approach  

to concept formation.  
The goal is not to optimize absolute accuracy, but to demonstrate that  

stable, explainable concept attractors can be formed from extremely limited data  
(few-shot learning) and that their performance and error patterns directly follow from their 
topological and parametric structure.  

Experiments are conducted on a subset of MNIST-6 (classes "1", "2", "3", "6", "7", "9"),  
using 5–6 unique training samples per subclass. 

Classification performance on MNIST-6 in Few-Shot mode 
The system was trained on 8 concepts covering 6 classes (some classes, such as "1" and "2", 

had two concepts to represent different writing styles).  
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Training consisted of iterative structural reduction of 5–6 base samples  
(with 10 augmentation variants per sample, for a total of about 350 examples) for each concept. 

Evaluation was performed on a test sample of 5.467 images that were not used  
in the formation of concepts.  

Overall performance metrics are presented in Table 2. 
 
Table 2. Overall classification performance (5,467 test images) 
 

Metrics Value (%) 
Accuracy 82.35 
Precision 83.28 

Recall 82.35 
F1 Score 82.16 

 
These results are conceptually significant. The accuracy of 82.35 % demonstrates that  

the approach based on the formation of canonical structural attractors without gradient 
optimization is viable and provides meaningful classification.  

The processing pipeline showed high reliability, with a success rate of 100 %, except  
for 10 images (0.18 %) that could not be processed due to skeletonization errors that resulted in 
disconnected graphs. 

Analysis of class-wise performance and topological distinctiveness 
An in-depth analysis of metrics for each class (Table 3) reveals a direct dependence  

of performance on the structural uniqueness of digits. 
 
Table 3. Class-based classification metrics 
 

Digit Precision (%) Recall (%) F1 (%) Quantity 
1 81.46 96.49 88.34 997 
2 84.17 60.02 70.07 948 
3 78.21 87.28 82.50 983 
6 94.23 78.09 85.40 753 
7 74.38 82.12 78.06 990 
9 91.55 89.57 90.55 786 

 
Key observations: 
1. High Precision for "6" (94.23 %) and "9" (91.55 %): These classes have the most unique 

topological signatures – closed cycles represented by IntersectionPoint nodes. Their attractors are 
very specific, which minimizes false positives. 

2. Low Recall for "2" (60.02 %): This indicator shows that a significant portion  
(almost 40 %) of true "2" digits were not recognized. This indicates a high morphological 
variability in the writing of "2", which the formed concepts ("2_1" and "2_2") were unable  
to fully cover. Their parametric ranges, studied from only 5–6 samples, proved to be too rigid. 

3. Low Precision for "7" (74.38 %): This class was most often confused with others, indicating 
its structural ambiguity, especially with regard to the digit "1". 
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Confusion Matrix Analysis 
The confusion matrix (Figure 2) provides a deep understanding of how the model  

makes decisions by visualizing systematic errors that are a direct result of structural  
and topological similarities. 
 

 
 

Fig. 2. Matrix of mismatches for the 6-class digit MNIST classification 
(The primary mismatch occurs between digits 7 and 1 (angular open contours), and the secondary 
mismatch occurs between digits 2 and 3 (curved open contours). Digits with closed contours (6, 9)  
show strong discrimination.) 

 
Primary mismatch: 152 samples of digits "2" were classified as "3". 28 samples of "3" were 

classified as "2". Secondary discrepancy: 118 samples of digits "7" were classified as "1". Classes 
"6" and "9" show minimal discrepancy between themselves and other open contours  
(for example, only 48 samples of "6" were misclassified as "9"). 

Unlike "black boxes", where the causes of errors are hidden in millions of weights,  
the errors in this model are fully interpretable. Analysis shows that errors are concentrated along 
structurally similar pairs: 

1. "2" vs "3": Both digits have similar "curved morphology". They are open contours  
that start on one side, have several bends (represented by CornerPoint nodes), and end  
on the other side. 

2. "7" vs "1": Both digits are "angular open contours". They are both simple paths consisting 
of a StartPoint, CornerPoint, and EndPoint. The mismatch occurs when the writing of "7" is less 
curved, or "1" has a more pronounced angle at the beginning. 
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The fact that the model confuses "7" with "1" (structurally similar) but does not confuse "7" 
with "6" (structurally different – open contour vs. closed) is strong evidence that the graph 
matching mechanism works correctly and makes decisions based on topology, as designed. 

Stability of concept attractors and structural explainability (XAI) 
This section analyzes the final result of the learning process – stable concept attractors, which 

are the carriers of explanations in the system. 
The process of structural reduction transforms multiple training graphs into single  

canonical structures. Their metrics (Table 4) quantitatively determine the "ideal" form  
of each digit. 
 

Table 4. Structural metrics of concept attractors 
 

Concept Nods Edgrs Av. Degree Critical points  
(EP, CP, IP, SP) 

1_1 3 2 1.33 1 EP, 1 SP 
1_3 3 2 1.33 1 EP, 1 SP 
2_1 7 6 1.71 1 EP, 2 CP, 1 SP 
2_2 12 12 2.00 1 EP, 3 CP, 1 IP, 1 SP 
3_1 7 6 1.71 1 EP, 2 CP, 1 SP 
6_1 10 10 2.00 3 CP, 1 IP, 1 SP 
7_1 5 4 1.60 1 EP, 1 CP, 1 SP 
9_2 8 8 2.00 2 CP, 1 IP, 1 SP 

 
EP = EndPoint; CP = CornerPoint; IP = IntersectionPoint; SP = StartPoint 

 
Analysis of Table I demonstrates a direct correlation between digit topology and the 

complexity of its attractor.  
Simple linear structures ("1"): Concepts "1_1" and "1_3" are minimal, consisting  

of only 3 nodes (StartPoint, Line, EndPoint). This perfectly reflects their topology as  
a simple, unbranched path.  

Closed contours ("6", "9"): These concepts have a higher average degree (2.00), indicating 
the presence of cycles. Importantly, they do not contain an EndPoint (EP = 0), but they do contain 
an IntersectionPoint (IP = 1) where the cycle closes.  

Open curved contours ("2", "3", "7"): These concepts have intermediate complexity  
(5–12 nodes). They all contain exactly one EndPoint (EP = 1), which topologically marks  
them as open contours. The number of CornerPoints (CP) encodes the number of bends  
(e.g., "7_1" has 1 CP, "2_1" has 2 CP). 

This table is essentially a dictionary for XAI. The explanation for the "9" classification is that 
the input image graph successfully matched the "9_2" concept, which is canonically defined as an 
8-node structure with 1 IntersectionPoint (cycle) and 0 EndPoints (no free ends). 

Case Study: Iterative Stabilization of the Attractor (Digit "3") 
The process of concept formation (Figures 3, a–d) is an empirical demonstration  

of theoretical reduction operators. 
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Fig. 3. Concept formation process 
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Step 1 ( 0 1C G= ): The first pattern (G1) establishes the initial concept 0C . It is overly specific 
and contains all the structural details and noise of the initial pattern (Fig. 3, a). 

Step 2 ( ( )1 0 2,C CRO C G= ): Integration of the second sample (G2) reveals a discrepancy –  

a "redundant endpoint branch". The structural reduction operator (Endpoint removal) is applied, 
which removes this noise specific to G1. This is a practical implementation of the operator wR  that 
finds a common substructure (Fig. 3, b). 

Steps 3 and 4 ( 2 3,C C ): Further iterations continue this process, removing the "redundant corner 
point" (Fig. 3, c) and another "noise substructure" (Fig. 3, d). 

The final concept 3C  (Fig. 3, d) is a stable attractor representing the most general topological 
structure ("curved S-shape") common to all training samples. This process is a form of learning 
without backpropagation of error, where it is not the weight vector that is optimized,  
but the representation structure itself. 

 
Example of parametric generalization (Digit "3") 
Structural reduction determines which nodes remain, while parametric generalization 

determines how their attributes are generalized to encode variability. Using the example  
of the concept "3_1" (formed from 3 samples): 

Numeric Properties: Attributes such as coordinates are not averaged but converted to ranges 
({min, max, center}). This creates flexible decision boundaries. 

• xnormalized : [–0.7, 0.2] (center –0.33) 
• ynormalized : [0.3, 0.9] (center 0.63) 

Count Properties: Topological variations are also encoded as ranges. 
• endpoint_counts: {min: 2, max: 4, center: 2.67} 
• intersection_point_counts: {min: 0, max: 2, center: 0.67} 
Categorical Properties: Only stored if there is a 100% match. 
• contour_type: “OPEN” (all samples were open). 
• horizontal_direction: Removed (values were contradictory, e.g., "Left", "Right"). 
This process is a powerful XAI tool. The range endpoint_counts: {min: 2, max: 4} is a 

transparent, interpretable boundary. It shows that the model learned from training samples  
(which had, for example, 2, 4, and 2 endpoints) to expect that valid instances of "3" can have  
between 2 and 4 endpoints, with an ideal value (center) of 2.67.  

This provides recognition flexibility while maintaining verified structural constraints. 
 
Comparative Analysis in the Context of Few-Shot Learning 
To evaluate the effectiveness of the proposed approach (referred to as ComAN  

in the experimental materials), its results are compared with other machine learning models under 
severely limited data (few-shot) conditions. The data for comparison is taken  
from experimental reports. 

Since the request requires a visual comparison, the following table (Table 5) serves as the data 
source for a conceptual graph (bar chart) comparing accuracy.  
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Table 5. Comparison table 
 

Model Unique 
samples 

Epochs of 
learning Source Accuracy 

(%) 

ComAN  
(Our model) 

Up to 36 
(5–6/class) 1 This work 82.44 

Nielsen 
RMNIST/5 

(CNN) 
50 (5/class) 10–50 Nielsen (2017) 84.38 

Prototypical 
Networks 50–100 Purpose-learning Snell et al. (2017) 80–90 

MAML 50–100 Purpose-learning Finn et al. (2017) 80–95 

CNN (Standard) 500–1000 10–50 Krizhevsky et al. (2012) 74–78 

SVM (RBF) 500–600 1 LeCun et al. (1998) 69–75 

MLP (Standard) 400–600 10–50 Goodfellow et al. (2016) 53–61 

 
Analysis of this comparison reveals three key conclusions: 
1. Competitive accuracy: The accuracy of the ComAN model (82.44 %) is highly competitive. 

It significantly outperforms standard approaches such as MLP (53–61 %)  
and SVM (69–75 %), which demonstrate low performance or collapse on such small datasets. 

2. Fundamental difference from Meta-Learning: At first glance, MAML (up to 95 %)  
and Prototypical Networks (up to 90 %) outperform ComAN. However, these models  
are not "few-shot" in the same sense.  

They are meta-learners. They require extensive "pre-training on task distribution"  
or "on base classes" using backpropagation to "learn to learn". The ComAN model does not require 
any pre-training. It builds its concepts (attractors) from scratch, de novo, in a single pass (single-
epoch training).  

This is a radically different learning paradigm based on structural reduction rather than 
statistical optimization. 

3. Comparison with a direct competitor (Nielsen CNN): The most relevant comparison is with 
Nielsen RMNIST/5, where CNN was trained on the same number of samples (5 per class). CNN 
Nielsen (84.38 %) shows a slight advantage in accuracy (~ 2 %) over ComAN (82.44 %). 
However, this advantage comes at the cost of complete loss of interpretability and significantly 
higher training costs: Nielsen requires 10–50 epochs, backpropagation, dropout,  
and hyperparameter tuning.  

Our model achieves ~ 98 % (82.44/84.38) of SOTA accuracy using only 1 epoch,  
0 backpropagation, and providing 100 % transparency. 

This comparison empirically confirms the central thesis of the study: the system maintains 
competitive performance in few-shot mode while providing full structural interpretability. 
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Conclusions and prospects 
 

Recent advances in artificial intelligence (AI), particularly in deep learning and artificial 
neural networks (ANNs), have led to significant progress. However, the widespread application of 
these technologies has revealed fundamental limitations that call into question the viability  
of the current approach.  

Current ANN paradigms face a number of conceptual crises. They require enormous amounts 
of data for training, as well as significant time, computational, and energy resources.  
In addition to their high cost, these models, especially generative ones, exhibit  
significant reliability issues, generating errors and "hallucinations" that significantly  
undermine confidence in their results. 

This directly leads to the phenomenon of "data inbreeding", also known as "Model Autophagic 
Disorder" (MAD). When models trained to favor statistical probability begin to learn from 
synthetic data generated by themselves, they enter a recursive cycle.  

This process inevitably leads to rapid "information degradation and model collapse" as the 
entropy of the system continuously decreases, reinforcing averaging and eliminating any novelty. 

Conclusions and prospects for further research 
This study presents a comprehensive approach to AI that moves away from purely statistical 

methods in favor of biologically grounded principles of structural generalization. 
The paper successfully presents and experimentally validates a unified theoretical and 

practical framework. This framework combines the principles of structural generalization with  
a practical, transparent, and highly efficient XAI system based on generalized graph  
concepts (prototypes). 

The main contribution is to demonstrate that abandoning statistical optimization 
(backpropagation algorithm) in favor of deterministic graph reduction allows: 

1. Achieving competitive classification accuracy (82.35 %). 
2. Work in training mode on small samples (5–6 samples per class). 
3. Perform training in a single pass without backpropagation. 
4. Ensure complete internal explainability and transparency of decision-making. 
Despite the successful validation of the concept, the current implementation has clear 

bottlenecks that outline directions for future research. 
Computational limitation. The classification (inference) process relies on graph matching, 

which in general uses graph edit distance (GED), which is an NP-complete problem.  
This creates a significant computational load at the inference stage, resulting in an average 
processing time of ~ 3.5 seconds per image and the need for timeouts (e.g., 60 seconds).  

In fact, a compromise was made: the computational complexity of training (backpropagation) 
was replaced by the combinatorial complexity of inference (GED). 

Sensory limitation (preprocessing). The model is "fragile" and depends on the quality of the 
input "sensory" data: 
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1. Errors in preprocessing lead to a complete failure in processing, since the model cannot 
construct a correct graph. 

2. Invariance is limited by the range used in augmentation (). More significant rotations 
destroy the structural alignment because they change the attributes (e.g., quadrants)  
of line nodes. 

Representation limitation. The model is "blind" to any information not related to shape.  
The current approach "discards texture and gradient information", limiting its application 
exclusively to shape and contour recognition tasks. 

The identified limitations directly point to prospects for further research: 
1. Short-term prospects include solving immediate engineering problems: researching fast 

GED approximation algorithms to speed up inference; developing more robust skeletonization 
methods; and extending the graph representation to include texture and gradient attributes, 
transforming the model into a multimodal one (in terms of physical parameters). 

2. The long-term vision addresses the most fundamental limitation of the current research: 
"the lack of modeling of evolutionary biological inter-neuronal connections". The current ComAN 
model successfully implements the concept of a "grandmother cell" – one static concept (neuron) 
is responsible for one class.  

The next fundamental step is to move from modeling individual neurons to modeling dynamic 
networks of these neurons. This will require the development of mechanisms by which these graph 
concepts can dynamically interact, compete (e.g., through "Winner Take All" mechanisms), and 
form more complex, hierarchical "models of the world".  

This is the path to creating AI systems that not only mimic biological efficiency but also 
approach true biological plausibility. 
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НАВЧАННЯ ЗА КІЛЬКОМА ПРИКЛАДАМИ (FEW-SHOT) ГРАФОВОЇ 
МОДЕЛІ НЕЙРОННОЇ МЕРЕЖІ БЕЗ ВИКОРИСТАННЯ 

ЗВОРОТНОГО ПОШИРЕННЯ ПОМИЛКИ 
 

Предметом роботи є структурно-графовий підхід до класифікації контурних зображень у режимі  
few-shot без використання зворотного поширення похибки. Основна ідея – зробити структуру носієм 
пояснень: зображення кодується у вигляді атрибутивного графа (критичні точки й лінії як вузли з 
геометричними атрибутами), а узагальнення виконується через формування концепт-атракторів.  
Мета дослідження – спроєктувати та експериментально підтвердити архітектуру, у якій концепти класів 
утворюються з кількох прикладів (5–6 на клас) способом структурних і параметричних редукцій, 
забезпечуючи прозорість рішень і відмову від зворотного поширення помилки. Завдання роботи:  
1) визначити словник вузлів / ребер і набір атрибутів для контурних графів; 2) задати нормалізацію та 
інваріантності; 3) розробити структурні та параметричні редукційні оператори як монотонне спрощення 
структури; 4) описати процедуру агрегації прикладів у стабільні концепти; 5) побудувати класифікацію 
через відстань редагування графа (Graph Edit Distance) з практичними апроксимаціями; 6) порівняти з 
репрезентативними підходами навчання за кількома прикладами. Застосовані методи. Векторизація 
контуру → двочастковий граф (Point/Line як вузли); атрибути: координати (нормовані), довжина, кут, 
напрям, топологічні степені. Редукції: усунення нестабільних підструктур або шумів, узгодження шляхів 
між критичними точками. Концепти утворюються ітеративною композицією зразків; класифікація – за 
найкращою відповідністю графа концепту (GED з апроксимаціями). Результати дослідження. На 
підмножині MNIST із 5–6 базовими прикладами на клас (одна епоха) отримано узгоджувану точність 
приблизно 82 % за повної трасованості рішень: помилки пояснюються конкретними структурними 
подібностями. Подано індикативне порівняння з SVM/MLP/CNN, а також метричною (ProtoNet) і 
метанавчальною (MAML) лініями у вигляді оглядового графіка. Висновки. Структурно-графова схема 
з концептами забезпечує навчання за кількома прикладами без зворотного поширення помилки й надає 
вбудовані пояснення через явну графову структуру. Обмеження стосуються вартості GED та якості 
скелетизації. Перспективи дослідження – оптимізація алгоритмів класифікації, робота зі статичними 
сценами й асоціативне розпізнавання. 

Ключові слова: зрозумілий штучний інтелект; few-shot машинне навчання; зворотне поширення 
помилки; редукція графів. 
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