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FEW-SHOT LEARNING OF A GRAPH-BASED
NEURAL NETWORK MODEL WITHOUT BACKPROPAGATION

The subject of this article is a structural graph approach to classifying contour images in few-shot mode without
using backpropagation. The core idea is to make the structure the carrier of explanations: the image is encoded as an
attributive graph (critical points and lines as nodes with geometric attributes), and generalization is performed through
the formation of concept attractors. The purpose of the study is to design and experimentally validate
an architecture in which class concepts are formed from several examples (5-6 per class) by means of structural and
parametric reductions, ensuring transparency of decisions and rejection of backpropagation of error. Objectives
of the work: 1) define a vocabulary of nodes/edges and a set of attributes for contour graphs; 2) set normalization and
invariance; 3) develop structural and parametric reduction operators as a monotonic simplification
of the structure; 4) describe the procedure for aggregating examples into stable concepts; 5) build a classification
through graph edit distance (Graph Edit Distance) with practical approximations; 6) compare with representative
learning approaches on several examples. Methods used. Contour vectorization — bipartite graph (Point/Line as
nodes); attributes: coordinates (normalized), length, angle, direction, topological degrees. Reductions: elimination
of unstable substructures or noise, alignment of paths between critical points. Concepts are formed by iterative
composition of samples; classification is based on the best match of the concept graph (GED with approximations).
Results of the study. On a MNIST subset with 5-6 basic examples per class (one epoch), a consistent accuracy
of approximately 82% was obtained with full traceability of solutions: errors are explained by specific structural
similarities. An indicative comparison with SVM/MLP/CNN, as well as metric (ProtoNet) and meta-learning
(MAML) lines, is presented in the form of a review graph. Conclusions. The structural graph scheme with concepts
enables learning from multiple examples without backpropagation of error and provides built-in explanations through
an explicit graph structure. Limitations relate to the cost of GED and the quality of skeletonization. Research prospects
include optimization of classification algorithms, work with static scenes, and associative recognition.
Keywords: explainable artificial intelligence; few-shot machine learning; backpropagation; graph reduction.

Introduction

Recent advances in artificial intelligence (Al), particularly in deep learning and artificial
neural networks (ANNS), have led to significant progress in solving complex problems [1-3].
However, the widespread use of these technologies has revealed a number
of fundamental limitations that call into question the possibility of creating truly autonomous
and adaptive systems [4-6].

These limitations include: the need for massive amounts of data for training, which requires
significant time, computational, and energy resources [7, 8]; fundamental problems
with generative models related to trust in information, "hallucinations”, and the phenomenon
of "entropy gap" [4, 7, 9]; and model degradation when training on recursively generated data
(model autophagy disorder, MAD) [10, 11].
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In this work, we assume that these problems are fundamental in nature, stemming from
the current conceptual paradigm. Modern MLMs are based primarily on the statistical nature
of learning and a rigid architecture that is optimized using the backpropagation algorithm [2, 3, 6].

Even specialized approaches to few-shot learning, such as meta-learning
(MAML, Prototypical Networks) [12-14], are essentially complex methods of statistical
optimization. They do not eliminate the fundamental dependence on statistics and cannot truly
learn "from scratch” on a few examples, as they rely on models pre-trained on large data sets
or require a complex meta-learning step.

This paper considers an alternative approach based on abandoning backpropagation in favor
of biologically motivated structural generalizations. This paper presents a practical computational
implementation of such an approach.

We demonstrate how visual patterns (contour images) can be represented as attributed graphs
[15-17], where nodes (critical points, lines) and edges (spatial connections) encode the topological
and geometric properties of an object.

The learning process is implemented as single-pass few-shot learning without
backpropagation. It is based on the application of structural and parametric reduction operators,
which operate by monotonic structural simplification. Iterative application of these operators
on 5-6 unique samples causes the system to converge to a stable, generalized state with minimal
structural complexity — a generalized concept graph (or prototype graph).

Analysis of recent studies and publications

The development of structural graph models for learning from a few examples lies at the
intersection of several key research areas: few-shot learning [14], explainability methods (XAI)
[18, 19], graph representations (GED) [20, 21], and alternative architectures (OvA/OvO) [22].
A review of the literature in these areas reveals fundamental conceptual limitations that the
proposed approach aims to address [7, 23-25].

Few-shot/Meta-learning

The dominant deep learning models (CNN, MLP, Transformer) are fundamentally statistical
and demonstrate low efficiency when trained on critically small datasets, requiring thousands
of examples and many training epochs to achieve acceptable accuracy. To solve this problem, few-
shot and meta-learning methods have been proposed [2, 7, 14, 26].

Prototypical Networks learn to identify class prototypes based on distance metrics in
embedding space [13]. MAML (Model-Agnostic Meta-Learning) attempts to find the optimal
initial weight initialization for fast adaptation [12]. Although both methods significantly improve
accuracy on small samples, they do not eliminate the fundamental dependence on statistics
and backpropagation.

They require a complex and resource-intensive meta-learning phase on large
auxiliary datasets [14, 26].

Thus, this is a transfer of knowledge obtained statistically, rather than true one-pass
learning "from scratch™.
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Explainable Al (XAl) and Graph Representations

As models have grown in complexity, the problem of their interpretability has become more
acute. Deep learning models function as "black boxes". Popular XAl methods, such as LIME
and SHAP, are post-hoc techniques: they attempt to approximate the behavior of an already trained
model rather than explain its actual decision-making process [27, 28]. Studies have shown that
such explanations can be unreliable, contradictory, and vulnerable to adversarial attacks [18, 19,
29, 30].

An alternative is "explainability by design™, where the internal representation of the model
is semantically meaningful [16, 18, 19]. Graph structures are ideal candidates for this
because they allow semantics to be explicitly encoded in nodes and edges. Graph Edit
Distance (GED) [20, 21] is used to compare such structures. However, GED is
an NP-hard problem, which remains a challenge for practical application [31, 32].

Alternative architectures (OvA/OvO) and the problem of feature generalization

To solve classification problems, alternative ANN architectures have long been considered:
"one-vs-all" (OvA) and "one-vs-one" (OvO) [22]. This is an approach where, instead of one large
network, specialized networks are used (for example, one for each class). This approach is
conceptually similar to the one we propose, where we build a single separate "neuron”
(concept graph) for each class.

However, in classical implementations of One-vs-All / One-vs-One architectures
(OvA/OVvO), which rely on the backpropagation algorithm, there are noticeable limitations in
detecting examples that go beyond the boundaries of the training data. One-vs-One, OvA/OvO)
architectures, which rely on the backpropagation algorithm, there are noticeable limitations in
detecting examples that fall outside the training distribution (Out-of-Distribution
Detection, OOD) [33, 34]. Networks trained on limited examples do not form stable
class separation boundaries.

This is because traditional ANNs generalize only local recognition features
(e.g., individual textures or angles) and cannot generalize features at the level of the entire structure
[23, 24]. Their fully connected and combinatorial nature with stochastic initialization makes it
impossible to generalize global topological properties. Our approach
solves this problem because generalization occurs not through stochastic optimization of local
weights, but through deterministic structural reduction of the graph, which captures
global topological features.

Synthesis: Identified conceptual gaps

A review of the literature reveals three distinct but interrelated problems:

1. Dependence of few-shot learning methods on the backpropagation algorithm: Leading few-
shot methods (MAML, ProtoNets) are not true “zero-shot" learning, but rather knowledge transfer
methods that require intensive prior training using backpropagation.

2. Unreliability of XAl: Existing XAl methods (LIME, SHAP) remain mostly post-hoc,
unreliable, and vulnerable to attacks.

Feature locality in OvA: Classical architectures (including OvA/OvO) are unable to generalize
global/structural features, leading to OOD problems and unstable decision boundaries
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Research gaps, Purpose and Objectives

Research gaps

1. Reliability of explanations: Approaches with "by design™ explainability are needed, rather
than post-hoc approximations (LIME/SHAP).

2. Training on multiple examples without backpropagation: Leading methods (MAML,
ProtoNets) still rely on gradient updates. Alternatives are needed that work in low-data
modes without backprop.

3. Generalization of global features: Classical ANNSs (including OvA) capture local patterns
but are not capable of generalizing global topological structure, which is key
to shape recognition.

4. GED complexity: Graph edit distance (GED) is NP-hard, which limits its
practical application.

The purpose of the work is to develop and experimentally validate a structural
graph approach to few-shot classification of contour images without backpropagation,
in which the generalization of several class examples is performed through a sequence
of structural and parametric reductions, and decision-making has built-in explainability due to the
explicit graph structure.

Obijectives

1. Representation. Define the representation of a contour image as an attributed graph
(node/edge types, geometric attributes, normalization, and invariance) taking into account
skeletonization/vectorization properties.

2. Reduction operators. Develop a set of structural (removal of unstable branches, merging of
intersections, normalization of paths) and parametric (min-max-center  ranges
for numerical features) operators that simplify the set of examples into a concept attractor.

3. Aggregation of examples. Build a procedure for forming a concept from 5-6 examples per
class in few-shot mode, fixing attribute tolerances and filtering random structures.

4. Classification. Design a concept matching scheme (GED with heuristics based
on bipartite matching/local searches) with strict time and quality constraints.

5. Experimental protocol. Conduct tests on a subset of MNIST/similar contour sets:
one epoch, 5-6 basic examples/class (+augmentations); evaluate accuracy, concept stability,
computation time.

6. Comparison with FSL databases. Compare with representative methods (Prototypical
Networks, MAML) as examples of metric and meta-learning approaches; provide
an indicative graph (caution regarding different protocols).

Explainability and risks. Explicitly record structural subgraphs/attributes that support
decisions; compare with post-hoc explanations and discuss limitations of applicability
(when structure "does not explain™).
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Materials and Methods

This section describes in detail the methodological pipeline used to convert two-dimensional
contour images into stable concept graphs and their subsequent classification. The methodology is
based on the principles of structural generalization and rejects gradient optimization.

Representation of contours as attributed graphs

To achieve transparency and move away from the "opaque™ weight matrices characteristic
of traditional neural networks, a representation is proposed where “structure is the carrier
of explanations”.

The input contour image, obtained after the binarization and skeletonization stages,
is transformed into an attributed graph.

The system encodes contours as bipartite graphs, whose structure strictly alternates between
Point type nodes and Line type nodes. This architectural differentiation is fundamental because it
allows the topological structure (critical points) to be clearly separated from the geometric
properties (the segments that connect them).

Point nodes: Represent the topological structure and critical points of the contour.
They are ontologically classified into four main types:

- EndPoint: Terminal nodes that mark the beginning or end of an open contour.

- CornerPoint: Nodes that mark sharp changes in direction (corners).

- IntersectionPoint: Nodes where three or more segments meet.

- StartPoint: A designated anchor node that defines the canonical starting point of the graph
traversal to ensure consistency of comparisons.

Line nodes: Represent geometric properties. Importantly, line segments are represented
as first-class nodes rather than edges. This allows them to be assigned rich semantic
and geometric attributes on par with Point nodes, which is critical for subsequent
parametric reduction operations.

Edges (Interconnections): Point and Line nodes are connected exclusively by bidirectional edges
of type CONNECTED _TO. This creates a strict traversal pattern Point — Line — Point — ...

Each node carries a set of attributes that encode measurable geometry and topology
parameters, including: normalized_x, normalized_y (coordinates normalized to the invariant range
[-1, 1]), length (segment length), angle (angle for CornerPoint), quadrant (discretized direction),
horizontal _direction, and vertical_direction.

Invariance through normalization

To ensure invariance of representation to scale and shift, which is a necessary condition for
the formation of stable attractors, all coordinates and related metrics (e.g., length) are normalized.
Point coordinates are transformed into a centered system with a range of [-1, 1] using the formula:

normalized, = (x—center, )/ center,.
A similar formula is applied to y.
This process is the first step in parametric reduction (R, .), which converts absolute values

specific to a particular instance into relative, generalized parameters.
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The learning process as a structural reduction of a graph

The learning process (concept formation) in this work is fundamentally different from
traditional statistical optimization (e.g., gradient descent along the loss function). It is viewed as
a deterministic process of structural generalization that strives for a state of minimal structural
complexity. This most stable, generalized state of the system, representing the invariant essence
of the class (e.g., all variants of writing the Fgure "3"), is called a generalized concept graph.

The transition from a set of individual sample graphs (G,,...,G,) to a single concept

graph C is a process of controlled simplification (reduction) of the structure. This process is
controlled by a set of special reduction operators (Custom Reduction Operations, CRO), which act
by reducing structural complexity or parametric variability, attempting to simplify the graph to
a stable prototype in a finite number of steps.

The general reduction process can be described as a composition of three classes
of operators:

R=R, (Rsp (Ru.c (Ginput )))

where G,
R Ry

A key aspect of our methodology is the direct comparison of these theoretical operators
with specific CRO algorithms implemented in the system, as detailed in Table 1.

— input graph;

R, — theoretical reduction operators.

u,c’?

Table 1. Structural and parametric reduction (CRO) operators

Theoretical Name and Purpose Practical Algorithm Details
Operator Implementati
on (CRO)
Ruc Minimization of Parametric Numeric properties v;,...,Vv, :

(Parametric parametric variability. Generalization | merge into a rang

Reduction) Transition from min: min (v; ), max : max v; ), center :avg(v; ) ;
quantitative values to this generalizes variations
generalized qualitative (e.g., length, angle).
ranges.

Categorical properties s,,...,s, :

merge into s, only if s;=s, forall i;
otherwise, the attribute is removed
(filtering of inconsistent parameters).
List properties L,...,L,: merge due to
the intersection of sets L, n...N L, ; this
preserves only universal labels (e.g.,

Point).

Rsp Simplification Path Pruning | For two aligned critical points, the
(Structural- (reduction) of the algorithm finds all simple paths
Parametric structure based on the between them. It selects the ™best
Reduction) stability of its match™ of paths based on the similarity

parameters. of nodes and uses the shorter path as

a template. Nodes from the longer path
that do not have a match are removed.
This "eliminates length variations".
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Continuation of the table 1

Theoretical Name and Purpose Practical Algorithm Details
Operator Implementati
on (CRO)

Ry, Removal of topological Endpoint Endpoint removal: The algorithm
(Structural elements that are Removal and | calculates the similarity matrix of
Reduction) statistically insignificant | Intersection | endpoints between the concept C; and

(noise). Point Merging | the sample G;,,. Endpoints with low

similarity (below the threshold) or
"extra" points are removed along with
the entire path to the nearest critical
point.

Intersection merging: Consolidates
IntersectionPoint nodes representing
the same structural feature. Applies
semantic reduction

(e.g., IntersectionPoint with a degree < 2
becomes CornerPoint or EndPoint).

Iterative algorithm for attractor formation

The learning process is one-pass and does not require backpropagation of error.
It iteratively builds an attractor based on a very small sample consisting of 5-6 unique
training samples per class.

The concept is initialized with the first sample graph: C, = G,. This sample acts as an initial
hypothesis about the class structure. Each subsequent sample G,,; is integrated into the current
concept C; using a reduction operation C,,, = CRO(C;,G,, ).

Each operation CRO is a five-step process that applies the reduction operators from Table 1:

1. Alignment of starting points: Establishing a common origin for graph traversal C.
and G, ,

2. Preprocessing of critical points: Applying structural operators R, (Endpoint removal,

by clustering and selecting StartPoint.

Intersection merging) to achieve basic structural compatibility.
3. Traversal synchronization: Generating synchronized paths between corresponding critical
points in both graphs.

4. Common structure identification: Applying a structural-parametric operator R,

(Path pruning) to normalize paths and eliminate length variations between critical points.
5. Parametric merging: Application of a parametric operator R (Parametric

u,c
Generalization) to merge node attributes that remain after structural reduction.
This iterative process is path-dependent; the order in which samples are submitted affects the

final concept graph. This mimics a process where the initial hypothesis (G,) is iteratively refined
under the influence of new data (G, ), which acts as a reduction force, eliminating sample-specific

variations (noise) and leaving only the generalized core.
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Classification through approximate graph matching (GED)

The classification (inference) process consists of comparing the graph G, obtained from

test

an unknown input image with each concept graph C, from the trained library, minimizing the

graph edit distance (GED) to the input graph G, :

test *

Class (G, ) =arg min GED (Gt 1 Cy ) -

test !

GED is defined as the minimum cost of a sequence of operations (insertion, deletion,
replacement of nodes/edges) required to transform G, into C, .

In order for the GED metric to correctly take into account the generalized nature
of concepts, we use our own cost functions.

Node Substitution Cost: The cost of substitution a node veG,, with a node ueC, is

test

test

calculated based on range-based cost functions.
e For numerical attributes (e.g., length, angle): If the attributev value (e.9., Vigy, =5.5) falls

within the trained attribute u range (e.9., Uy, ={min:4,max:7,...} ), the substitution cost for this

attribute is 0. If the value is outside the range, the cost is proportional to the distance to the nearest
range boundary.

e For categorical attributes: The cost is 0 in case of exact match or infinite (high) in case
of mismatch.

e Label compatibility: The replacement cost is infinite if the base node types are
incompatible (e.g., Line to Point).

Edge editing cost: Reduced cost to prioritize topological differences (presence/absence
of nodes) over connectivity differences. Calculating the exact GED is an NP-hard problem.
To ensure practical applicability, an approximation is used via a hard 60-second timeout for each
individual comparison GED (G, Cy ) -

This timeout acts as a heuristic approximation that interrupts the search for the optimal editing
path if it takes too long and returns the best distance found at that moment.

Classification and winner selection mechanism

The proposed architecture implements an approach that is conceptually similar
to One-vs-All, where each class k is represented by a separate "neuron” that is a generalized

concept graph C,. The classification (inference) process consists of comparing the contour
in the form of a graph G, with each concept graph C, from the trained library.

Unlike stochastic networks, where the "excitation” of a neuron is a numerical output
(e.g., softmax), in our system, the "excitation" of a k -th neuron is the process of calculating

the editorial distance GED (G, C, ) . To select the final classification result, we apply the Winner-

Takes-All concept.
The winner is the class (concept) C, with the smallest editorial distance from

the input graph (G, ).
Class(G, ) =arg min{GED (Gest:C1),-...GED(Gy; . Cy )} -
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If the distance is the same for several classes, the conflict resolution rule is applied.
The class that is structurally more complex is selected.
Complexity is calculated as the sum of the nodes and edges of the graph (Fig. 1).

——CID(G e C | Concept-gragh C |

Reaulf: class &
/g oo
GED

Contour image Afributed praph G st (—GED(G e, C 1 Winer-Takes all

Several claszes wih

the same GED Cofit: . ul

distances

eeGED(G st C ) Concept-araph C N

Fig. 1. Classification scheme using GED and WTA

Results and discussion

This section presents empirical validation of the proposed graph-based approach
to concept formation.

The goal is not to optimize absolute accuracy, but to demonstrate that
stable, explainable concept attractors can be formed from extremely limited data
(few-shot learning) and that their performance and error patterns directly follow from their
topological and parametric structure.

Experiments are conducted on a subset of MNIST-6 (classes "1", "2", "3", "6", "7", "9"),
using 5-6 unique training samples per subclass.

Classification performance on MNIST-6 in Few-Shot mode

The system was trained on 8 concepts covering 6 classes (some classes, such as "1" and "2",
had two concepts to represent different writing styles).
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Training consisted of iterative structural reduction of 5-6 base samples
(with 10 augmentation variants per sample, for a total of about 350 examples) for each concept.

Evaluation was performed on a test sample of 5.467 images that were not used
in the formation of concepts.

Overall performance metrics are presented in Table 2.

Table 2. Overall classification performance (5,467 test images)

Metrics Value (%)
Accuracy 82.35
Precision 83.28

Recall 82.35

F1 Score 82.16

These results are conceptually significant. The accuracy of 82.35 % demonstrates that
the approach based on the formation of canonical structural attractors without gradient
optimization is viable and provides meaningful classification.

The processing pipeline showed high reliability, with a success rate of 100 %, except
for 10 images (0.18 %) that could not be processed due to skeletonization errors that resulted in
disconnected graphs.

Analysis of class-wise performance and topological distinctiveness

An in-depth analysis of metrics for each class (Table 3) reveals a direct dependence
of performance on the structural uniqueness of digits.

Table 3. Class-based classification metrics

Digit Precision (%) | Recall (%) | F1 (%) | Quantity
1 81.46 96.49 88.34 997
2 84.17 60.02 70.07 948
3 78.21 87.28 82.50 983
6 94.23 78.09 85.40 753
7 74.38 82.12 78.06 990
9 91.55 89.57 90.55 786

Key observations:

1. High Precision for "6" (94.23 %) and "9" (91.55 %): These classes have the most unique
topological signatures — closed cycles represented by IntersectionPoint nodes. Their attractors are
very specific, which minimizes false positives.

2. Low Recall for "2" (60.02%): This indicator shows that a significant portion
(almost 40 %) of true "2" digits were not recognized. This indicates a high morphological
variability in the writing of "2", which the formed concepts ("2_1" and "2_2") were unable
to fully cover. Their parametric ranges, studied from only 5-6 samples, proved to be too rigid.

3. Low Precision for "7" (74.38 %): This class was most often confused with others, indicating
its structural ambiguity, especially with regard to the digit "1".
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Confusion Matrix Analysis

The confusion matrix (Figure 2) provides a deep understanding of how the model
makes decisions by visualizing systematic errors that are a direct result of structural
and topological similarities.

Caonfusion Matrix

3 '] 29 3

800

600

True label

400

200

not classified - 0 0 0 0 0 0 0

Predicted label

Fig. 2. Matrix of mismatches for the 6-class digit MNIST classification
(The primary mismatch occurs between digits 7 and 1 (angular open contours), and the secondary
mismatch occurs between digits 2 and 3 (curved open contours). Digits with closed contours (6, 9)
show strong discrimination.)

Primary mismatch: 152 samples of digits "2" were classified as "3". 28 samples of "3" were
classified as "2". Secondary discrepancy: 118 samples of digits "7" were classified as "1". Classes
"6" and "9" show minimal discrepancy between themselves and other open contours
(for example, only 48 samples of "6" were misclassified as "9").

Unlike “"black boxes", where the causes of errors are hidden in millions of weights,
the errors in this model are fully interpretable. Analysis shows that errors are concentrated along
structurally similar pairs:

1. 2™ vs "'3": Both digits have similar "curved morphology”. They are open contours
that start on one side, have several bends (represented by CornerPoint nodes), and end
on the other side.

2.7 vs ""1": Both digits are "angular open contours". They are both simple paths consisting
of a StartPoint, CornerPoint, and EndPoint. The mismatch occurs when the writing of "7" is less
curved, or "1" has a more pronounced angle at the beginning.
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The fact that the model confuses "7" with "1" (structurally similar) but does not confuse "7"
with "6" (structurally different — open contour vs. closed) is strong evidence that the graph
matching mechanism works correctly and makes decisions based on topology, as designed.

Stability of concept attractors and structural explainability (XAl)

This section analyzes the final result of the learning process — stable concept attractors, which
are the carriers of explanations in the system.

The process of structural reduction transforms multiple training graphs into single
canonical structures. Their metrics (Table 4) quantitatively determine the “ideal” form
of each digit.

Table 4. Structural metrics of concept attractors

Concept | Nods Edgrs | Av. Degree Critical points
(EP, CP, IP, SP)
11 3 2 1.33 1EP,1SP
13 3 2 1.33 1EP,1SP
21 7 6 1.71 1EP,2CP,1SP
2.2 12 12 2.00 1EP,3CP,11IP,1SP
31 7 6 1.71 1EP,2CP,1SP
6.1 10 10 2.00 3CP,11P,1SP
71 5 4 1.60 1EP,1CP,1SP
92 8 8 2.00 2CP,11P,1SP

EP = EndPoint; CP = CornerPoint; IP = IntersectionPoint; SP = StartPoint

Analysis of Table | demonstrates a direct correlation between digit topology and the
complexity of its attractor.

Simple linear structures ("1"): Concepts "1 1" and "1 3" are minimal, consisting
of only 3 nodes (StartPoint, Line, EndPoint). This perfectly reflects their topology as
a simple, unbranched path.

Closed contours (6", "9"): These concepts have a higher average degree (2.00), indicating
the presence of cycles. Importantly, they do not contain an EndPoint (EP = 0), but they do contain
an IntersectionPoint (IP = 1) where the cycle closes.

Open curved contours (2", "3", "7"). These concepts have intermediate complexity
(5-12 nodes). They all contain exactly one EndPoint (EP = 1), which topologically marks
them as open contours. The number of CornerPoints (CP) encodes the number of bends
(e.g.,"7_1"has 1 CP, "2_1" has 2 CP).

This table is essentially a dictionary for XAl. The explanation for the "9" classification is that
the input image graph successfully matched the "9_2" concept, which is canonically defined as an
8-node structure with 1 IntersectionPoint (cycle) and 0 EndPoints (no free ends).

Case Study: Iterative Stabilization of the Attractor (Digit "3")

The process of concept formation (Figures 3, a—d) is an empirical demonstration
of theoretical reduction operators.
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Step 1 (C, =G,): The first pattern (G1) establishes the initial concept C, . It is overly specific

and contains all the structural details and noise of the initial pattern (Fig. 3, a).
Step 2 (C, =CRO(C,,G,)): Integration of the second sample (G2) reveals a discrepancy —

a "redundant endpoint branch”. The structural reduction operator (Endpoint removal) is applied,
which removes this noise specific to G1. This is a practical implementation of the operator R, that

finds a common substructure (Fig. 3, b).
Steps 3and 4 (C,,C,): Further iterations continue this process, removing the "redundant corner

point™ (Fig. 3, ¢) and another "noise substructure” (Fig. 3, d).
The final concept c, (Fig. 3, d) is a stable attractor representing the most general topological

structure (“curved S-shape™) common to all training samples. This process is a form of learning
without backpropagation of error, where it is not the weight vector that is optimized,
but the representation structure itself.

Example of parametric generalization (Digit "3")

Structural reduction determines which nodes remain, while parametric generalization
determines how their attributes are generalized to encode variability. Using the example
of the concept "3_1" (formed from 3 samples):

Numeric Properties: Attributes such as coordinates are not averaged but converted to ranges
({min, max, center}). This creates flexible decision boundaries.

e normalized, : [-0.7, 0.2] (center —0.33)

e normalized, : [0.3, 0.9] (center 0.63)

Count Properties: Topological variations are also encoded as ranges.

e endpoint_counts: {min: 2, max: 4, center: 2.67}

e intersection_point_counts: {min: 0, max: 2, center: 0.67}

Categorical Properties: Only stored if there is a 100% match.

e contour_type: “OPEN” (all samples were open).

e horizontal_direction: Removed (values were contradictory, e.g., "Left", "Right").

This process is a powerful XAl tool. The range endpoint_counts: {min: 2, max: 4} is a
transparent, interpretable boundary. It shows that the model learned from training samples
(which had, for example, 2, 4, and 2 endpoints) to expect that valid instances of "3" can have
between 2 and 4 endpoints, with an ideal value (center) of 2.67.

This provides recognition flexibility while maintaining verified structural constraints.

Comparative Analysis in the Context of Few-Shot Learning

To evaluate the effectiveness of the proposed approach (referred to as ComAN
in the experimental materials), its results are compared with other machine learning models under
severely limited data (few-shot) conditions. The data for comparison is taken
from experimental reports.

Since the request requires a visual comparison, the following table (Table 5) serves as the data
source for a conceptual graph (bar chart) comparing accuracy.
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Table 5. Comparison table

Model Unique Epoch_s of Source Accuracy
samples learning (%)
ComAN Up to 36 .
(Our model) (5-6/class) ! This work 8244
Nielsen
RMNIST/5 50 (5/class) 10-50 Nielsen (2017) 84.38
(CNN)
Prototypical i . i
Networks 50-100 Purpose-learning Snell et al. (2017) 80-90
MAML 50-100 Purpose-learning Finn et al. (2017) 80-95
CNN (Standard) 500-1000 10-50 Krizhevsky et al. (2012) 74-78
SVM (RBF) 500-600 1 LeCun et al. (1998) 69-75
MLP (Standard) 400-600 10-50 Goodfellow et al. (2016) 53-61

Analysis of this comparison reveals three key conclusions:

1. Competitive accuracy: The accuracy of the ComAN model (82.44 %) is highly competitive.
It significantly  outperforms standard approaches such as MLP (53-61 %)
and SVM (69-75 %), which demonstrate low performance or collapse on such small datasets.

2. Fundamental difference from Meta-Learning: At first glance, MAML (up to 95 %)
and Prototypical Networks (up to 90 %) outperform ComAN. However, these models
are not "few-shot" in the same sense.

They are meta-learners. They require extensive “pre-training on task distribution”
or "on base classes" using backpropagation to "learn to learn”. The ComAN model does not require
any pre-training. It builds its concepts (attractors) from scratch, de novo, in a single pass (single-
epoch training).

This is a radically different learning paradigm based on structural reduction rather than
statistical optimization.

3. Comparison with a direct competitor (Nielsen CNN): The most relevant comparison is with
Nielsen RMNIST/5, where CNN was trained on the same number of samples (5 per class). CNN
Nielsen (84.38 %) shows a slight advantage in accuracy (~2 %) over ComAN (82.44 %).
However, this advantage comes at the cost of complete loss of interpretability and significantly
higher training costs: Nielsen requires 10-50 epochs, backpropagation, dropout,
and hyperparameter tuning.

Our model achieves ~98 % (82.44/84.38) of SOTA accuracy using only 1 epoch,
0 backpropagation, and providing 100 % transparency.

This comparison empirically confirms the central thesis of the study: the system maintains
competitive performance in few-shot mode while providing full structural interpretability.
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Conclusions and prospects

Recent advances in artificial intelligence (Al), particularly in deep learning and artificial
neural networks (ANNSs), have led to significant progress. However, the widespread application of
these technologies has revealed fundamental limitations that call into question the viability
of the current approach.

Current ANN paradigms face a number of conceptual crises. They require enormous amounts
of data for training, as well as significant time, computational, and energy resources.
In addition to their high cost, these models, especially generative ones, exhibit
significant reliability issues, generating errors and “hallucinations™ that significantly
undermine confidence in their results.

This directly leads to the phenomenon of "data inbreeding”, also known as "Model Autophagic
Disorder” (MAD). When models trained to favor statistical probability begin to learn from
synthetic data generated by themselves, they enter a recursive cycle.

This process inevitably leads to rapid "information degradation and model collapse” as the
entropy of the system continuously decreases, reinforcing averaging and eliminating any novelty.

Conclusions and prospects for further research

This study presents a comprehensive approach to Al that moves away from purely statistical
methods in favor of biologically grounded principles of structural generalization.

The paper successfully presents and experimentally validates a unified theoretical and
practical framework. This framework combines the principles of structural generalization with
a practical, transparent, and highly efficient XAl system based on generalized graph
concepts (prototypes).

The main contribution is to demonstrate that abandoning statistical optimization
(backpropagation algorithm) in favor of deterministic graph reduction allows:

1. Achieving competitive classification accuracy (82.35 %).

2. Work in training mode on small samples (5-6 samples per class).

3. Perform training in a single pass without backpropagation.

4. Ensure complete internal explainability and transparency of decision-making.

Despite the successful validation of the concept, the current implementation has clear
bottlenecks that outline directions for future research.

Computational limitation. The classification (inference) process relies on graph matching,
which in general uses graph edit distance (GED), which is an NP-complete problem.
This creates a significant computational load at the inference stage, resulting in an average
processing time of ~ 3.5 seconds per image and the need for timeouts (e.g., 60 seconds).

In fact, a compromise was made: the computational complexity of training (backpropagation)
was replaced by the combinatorial complexity of inference (GED).

Sensory limitation (preprocessing). The model is "fragile™ and depends on the quality of the
input "sensory" data:
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1. Errors in preprocessing lead to a complete failure in processing, since the model cannot
construct a correct graph.

2. Invariance is limited by the range used in augmentation (). More significant rotations
destroy the structural alignment because they change the attributes (e.g., quadrants)
of line nodes.

Representation limitation. The model is "blind" to any information not related to shape.
The current approach "discards texture and gradient information”, limiting its application
exclusively to shape and contour recognition tasks.

The identified limitations directly point to prospects for further research:

1. Short-term prospects include solving immediate engineering problems: researching fast
GED approximation algorithms to speed up inference; developing more robust skeletonization
methods; and extending the graph representation to include texture and gradient attributes,
transforming the model into a multimodal one (in terms of physical parameters).

2. The long-term vision addresses the most fundamental limitation of the current research:
"the lack of modeling of evolutionary biological inter-neuronal connections”. The current ComAN
model successfully implements the concept of a "grandmother cell" — one static concept (neuron)
is responsible for one class.

The next fundamental step is to move from modeling individual neurons to modeling dynamic
networks of these neurons. This will require the development of mechanisms by which these graph
concepts can dynamically interact, compete (e.g., through "Winner Take All" mechanisms), and
form more complex, hierarchical "models of the world".

This is the path to creating Al systems that not only mimic biological efficiency but also
approach true biological plausibility.
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HABYAHHS 3A KIJIBKOMA IMPUKJAJAMM (FEW-SHOT) TPA®OBOI
MOJEJII HEUPOHHOI MEPEXI BE3 BUKOPUCTAHHSA
3BOPOTHOI'O IOIIUPEHHA IIOMUNJIKH

IIpenmMeToM po6oTH € CTPyKTypHO-TpadoBHi MiaXia A0 Kiacudikamii KOHTYPHHX 300pakeHb Y pPEXHMI
few-shot 6e3 BukopHcTaHHS 3BOPOTHOTO MOIIMPEHHS MOXHOKH. OCHOBHA ifies] — 3pOOUTH CTPYKTYPY HOCIEM
MOSICHEHB: 300pa)kKeHHSI KOIYEThCSA y BUIIIAMI aTpUOYTHUBHOrO rpada (KpUTHUYHI TOYKHA W JiHII SK By3JIH 3
TCOMETPUYHUMHU aTpuOyTaMHu), a y3arajlbHCHHS BHUKOHYEThCS depe3 (OPMYBaHHS KOHIICTIT-aTPAKTOPIB.
MeTa 10C/TiAKeHHS — CTIPOEKTYBATH Ta EKCIIEPUMEHTANBHO MiATBEPIUTH apXITEKTYPY, Y AKii KOHIIENTH KJIaciB
YTBOPIOIOTHCS 3 KIIBKOX MpUKIaAiB (5—6 Ha Kiac) cnocoOOM CTPYKTYPHHX 1 MapaMeTpUYHHX pEeAyKUiH,
3a0e3Meuyourd Npo30PiCTh pillleHb 1 BIIMOBY BiJ 3BOPOTHOTO MOLIMPEHHS MOMUJIKH. 3aBAaHHA POOOTH:
1) BU3HAYMTH CIIOBHHUK BY3JiB / pebep i Habip aTpuOyTIB JUIS KOHTYpHUX rpadip; 2) 3a1aTH HOpMaITi3allilo Ta
IHBapiaHTHOCTI; 3) pO3pOOUTH CTPYKTYPHI Ta MapaMeTpHUHI peayKIliiiHi onepaTopH SK MOHOTOHHE CIPOIICHHS
CTPYKTYpH; 4) OITUCATH NPOIICYPY arperailii IpUKIamiB y CTa0lIbHI KOHIIETITH; 5) MO0y yBaTH Kiacu(pikailito
4epes BifcTadb pexaryBanns rpada (Graph Edit Distance) 3 mpakTHuHHMK anpOKCHMAITiSIMHA; 6) MTOPIBHSTH 3
pENpe3eHTAaTUBHIMH MiJX0JaMH HAaBYAaHHS 33 KUTbKOMa IpPHKIaZaMH. 3acTocoBaHi MeToam. BexTopmzaris
KOHTYpy — JaBouacTkoBwmii rpad (Point/Line sk By3nm); atpuOyTu: KOOpAuHATH (HOPMOBAHI), TOBXKUHA, KYT,
HaIpsiM, TOIIOJIOT14uHi cTeneHi. Penykuii: ycyHeHHs HecTaOlnbHUX MiACTPYKTYP a00 IIyMiB, y3T0KEHHSI IUISX1B
MIX KPUTHYHUMH TOUYKaMH. KOHIIENTH YTBOPIOIOTHCS ITEPATUBHOIO KOMITO3HIIEI0 3pa3KiB; KiIacupikallisa — 3a
Halikpamow BiamoBimHicTio rpada konuenty (GED 3 ampokcumarismu). PesynastraTtm mocmimxkenns. Ha
migmMaokuHI MNIST 13 5-6 6a30BUMH NMpHUKITagaMH Ha Kiac (O/HA €1oXa) OTPUMAHO Y3TOJKYBaHY TOUYHICTh
npubam3Ho 82 % 3a MOBHOI TPAacOBAHOCTI PIiIlIEHb: NMOMIJIKH MOSCHIOIOTHCS KOHKPETHUMH CTPYKTYPHHUMH
nonioHocTsiMu. [lomano inaumkatueHe mopiBHAHHA 3 SVM/MLP/CNN, a Takox merpuunoro (ProtoNet) i
MeTaHaByaibHOIO (MAML) miHisiMu y BUrIsiai orsanoBoro rpagika. BucaoBku. CTpykTypHO-TpadoBa cxema
3 KOHLIENTaMH 3a0e3Meuye HaBYaHHS 3a KUIbKOMa MPUKIaJaMu 0e3 3B0pOTHOIO MOMIMPEHHS TOMUNIKY i Hajae
BOYZOBaHI MOSICHEHHs 4epe3 sBHY TpadoBy cTpykTypy. OOMexeHHs cTocyloThes BapTocTi GED Ta sixocTi
ckenetm3anii. [lepceKTHBU DOCTIIKEHHS — ONTHMI3allis alropuTMiB Kiacudikaiii, podoTa 3i CTaTHIHUMH
CIICHaMH ¥ acoIliaTUBHE pO3Mi3HABAHHSI.

KarwuoBi cioBa: 3po3yminuii mTy4nuii intenekr; few-shot mamvnHe HaBYAHHS, 3BOPOTHE MOIIMPEHHS
MOMIJIKH; PEAYKIis rpadis.
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