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EVALUATION OF THE EFFECTIVENESS OF THE TEST CASE 
FORMING METHOD FOR C++ LIBRARIES BASED  

ON A Q-LEARNING AGENT 
 

Effective optimization of test cases (TC) is a prerequisite for improving the effectiveness of regression testing  
of C++ libraries. The subject of the study is methods for forming (optimizing) TC for C++ libraries. The purpose 
of the work is to evaluate the effectiveness of the method of forming TC for C++ libraries based on a Q-learning 
agent. Research tasks: to improve the mathematical model of a Q-learning agent to increase the efficiency  
of forming TC for C++ libraries in conditions of high sparsity of the state space of the Q-learning agent;  
to investigate the influence of the parameters of the improved Q-learning agent model on its behavior under such 
conditions; to consider the possibility of minimizing the formed TC by the method of their formation using the delta-
debugging algorithm for TC minimization; to evaluate the effectiveness of the proposed method and compare it with 
known TC optimization methods. Research methods. The work uses the Monte Carlo Tree Search method, the 
classical mathematical model of Q-learning, the delta debugging algorithm for TC minimization, and the greedy 
algorithm for TC optimization. The effectiveness of the proposed method was evaluated on two open-source  
C++ libraries using statistical analysis of 100 mathematical simulations of the configurations of the methods under 
study. Results achieved: the effectiveness evaluation indicates that the proposed method provides the following 
average values of TC optimization effectiveness coefficients for C++ libraries: the coverage retention ratio is  
up to 1.225, the test suite compression ratio is up to 0.86, and the test suite execution time reduction ratio is  
up to 0.74. It has been established that, when compared with the greedy optimization algorithm, the delta debugging 
minimization algorithm, and the optimization method based on Monte Carlo Tree Search, the proposed method 
significantly improves the efficiency of TC formation (optimization) for C++ libraries. Conclusions. The improved 
mathematical model provides generalization of the experience of the Q-learning agent between similar test cases and 
increases the efficiency of their formation in conditions of high sparsity of the state space of the Q-learning agent. 
Thus, the results of evaluating the method of forming TC for C++ libraries based on a Q-learning agent confirm its 
feasibility in solving the problem of forming (optimization) of TC for C++ libraries, which makes it possible to reduce 
the length of TC in the test suite without loss of the branch coverage of the C++ library code being tested and to reduce 
the execution time of TS. Further research will be devoted to the formation of TC for C++ libraries based on a deep 
reinforcement learning agent. 

Keywords: test case optimization; software testing; Q-learning; Q-table; delta debugging; code coverage; 
minimization; C++; agent; reinforcement learning. 
 

Introduction 
 

Software testing is a key element of software quality assurance. The testing process uses test 
suite (TS) consisting of test cases (TC) for interaction with the corresponding software interfaces 
of C++ libraries and their components. 

TC for C++ libraries and C++ libraries are developed in parallel, reflecting the practical 
features of using the API (Application Programming Interface, API) of the tested code.  
They accumulate throughout the software development life cycle and gradually cover  
a significant part of the functionality, as well as being the main source for verifying the correct 
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behavior of the output software product when changes are made to the code base. As the volume 
of such test cases increases, the cost of regression testing increases in both time  
and computational terms.  

C++ software libraries are used in large projects for image processing, file system operations, 
data analysis, etc. In such conditions, changes to the C++ library code lead  
to the need to re-execute a significant amount of TC in redundant TS to detect software regression 
defects.  

The execution time of C++ library TS can be reduced by optimizing the TC in the original 
TS. Thus, the task of TС optimization (Test Case Optimization, TCO) without loss  
of coverage is a relevant task that allows reducing testing costs, improving the informativeness of 
TC execution results, and, as a result, ensuring the effectiveness of regression testing.  

Previous studies have proposed a method for forming TC for C++ libraries based on  
a Q-learning agent, which reduces the size of original TS without loss of branch coverage  
of the code [1]. To justify the effectiveness of the proposed method, it is advisable to conduct  
a comparative analysis with relevant TC optimization methods. 

Analysis of literature 
Over the past decade, a number of review papers have been published that provide  

a fundamental understanding of existing TC optimization methods and criteria for evaluating their 
effectiveness. Systematic reviews [2–4] provide a basis for understanding the task of TC 
optimization, covering a broad classification of TC optimization methods, as well as the features 
of software environments for researching TC optimization methods.  

The importance of preserving the semantics of the original test suite, forming adequate criteria 
for evaluating effectiveness, and adhering to the methodological foundations  
of researching TC optimization methods is emphasized separately. 

The task of TS optimization consists of three interrelated tasks: TCS (Test Case Selection, 
TCS), TSP (Test Suite Prioritization, TSP), and TSM (Test Suite Minimization, TSM) [5].  
The purpose of TCS is to determine a subset of TC that need to be re-executed after changes in the 
program code of the library being tested. The purpose of TSP is the ordering of test cases in order 
to maximize the speed of software defect detection. TSM removes redundant TC from the TS 
while maintaining testing efficiency, thereby reducing the time required to execute the TS. 

Machine learning is used to optimize TS [6]. In particular, clustering algorithms are effectively 
used to reduce redundancy in TS and prioritize the TC [7].  

They are capable of operating based on the performance characteristics of C++ library tasks, 
which makes them useful for optimizing TC for C++ libraries without formal specifications 
(documented requirements for C++ library behavior). Reinforcement learning can also be 
effectively applied in these conditions [8]. 

An important factor in evaluating the effectiveness of TC optimization methods is the 
classification into adequate and inadequate methods, as formulated in [9]. According to this 
classification, adequate (coverage-preserving) TC optimization methods are those that ensure  
the preservation of the full level of testing effectiveness relative to the original TS.  
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After optimization, an adequate method guarantees that all structural (behavioral) constructs  
of the software that were tested by the original test cases remain covered by the new test cases. 

Thus, the adequacy characteristic is critically important in terms of the suitability of the TC 
optimization method for regression testing, where the loss of the test case's ability to detect defects 
in the software under test is unacceptable.  

In contrast, non-coverage-preserving methods allow for a partial loss of testing effectiveness 
in order to achieve higher test case compression rates. Inadequate methods can significantly reduce 
the amount of test coverage by reducing the ability to detect software defects, makingthem 
unsuitable for TC optimization for highly reliable software systems or libraries.  

The need for adequate TC optimization methods is also confirmed by an analysis  
of the peculiarities of testing C++ libraries [10], which focuses on the following aspects:  

− the absence of formal API specifications in open-source C++ libraries, which increases the 
role of methods capable of working in such conditions; 

− the need to analyze the dependencies between test case instructions during execution in 
order to optimize the TC effectively; 

− the complexity of the execution environment of C++ software, which necessitates flexible 
methods for forming TC for C++ libraries. 

The author's previous work [1] provides a thorough overview of TC optimization methods – 
delta debugging, dynamic slicing, integer linear programming (ILP) TC optimization methods, 
methods based on classification and clustering, as well as hybrid methods.  

To expand the analytical context of the previous work and clarify the role of individual 
methods in modern TC optimization research, Table 1 provides a comparative description  
of recent studies of TC optimization methods in different classes of problems. 

 
Table 1. Comparative characteristics of studies of TC optimization methods in different classes  

of problems 
 

Research Method class Research features Research results 

ATM method 
[11] 

Heuristic method 
of TSP based on 

evolutionary 
search 

Representation of TC in the 
form of abstract syntactic 
trees, search based on TC 

similarity. 

Detection of up to 0.82 
software defects when 
executing 50 % of TS. 

GA-based Test 
Suite 

Minimization 
(TSM) [12] 

Minimization of 
TS based on a 

genetic algorithm 

An analysis of the 
configuration of vehicle 

parameters based on a genetic 
algorithm was conducted. 

The possibility of finding a 
balance between maintaining 

coverage and reducing the 
execution time of the TS has 

been demonstrated. 

Metaheuristic 
Fault Detection 

[13] 

Metaheuristics for 
detecting software 

defects. 

An analysis was conducted on 
particle swarm optimization, 

ant colony optimization, 
cuckoo search, firefly 

algorithm, etc.  

Ability to work effectively 
without prior knowledge of 

software behavior. Low 
reproducibility of results. 
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Continuation of the Table 1 
 

Research Method class Research features Research results 

EA-based 
prioritization 

[14] 

Evolutionary 
method of 

prioritizing TC. 

An analysis of the effectiveness 
of the method was performed 
with an increase in the volume 
of input data in large projects. 

Effective allocation of time 
for testing software modules, 

which increases the 
efficiency of software testing. 

RL+GA 
Hybrid [15] 

A hybrid method 
based on 

reinforcement 
learning and a 

genetic algorithm. 

The possibility of using genetic 
algorithms to configure the 

input parameters of a Q-
learning agent was 

investigated. 

Acceleration of policy 
convergence when training 
an agent on pre-configured 

input data based on a genetic 
algorithm. 

General Monte 
Carlo Tree 

Search 
(MCTS) study 

[16] 

Monte Carlo Tree 
Search 

An analysis of the applicability 
of the Monte Carlo method for 

various classes of problems, 
including modifications of the 

method and hybrid 
configurations, was conducted. 

The method is highly 
effective, but special 

improvements are needed for 
different classes of problems. 

Monte Carlo 
Tree Search 

input 
parameters 

fuzzing [17] 

Prioritization of 
input data for 
training deep 

neural networks 
based on Monte 

Carlo Tree Search 
method 

Testing model as a decision-
making process. Investigation 

of large input data search 
spaces for TC. 

The results prove the 
effectiveness of the method 

and show an increase of up to 
+ 30 % in code coverage 

compared to basic methods. 

Monte Carlo 
Tree Search + 

UCT [18] 

Monte Carlo Tree 
Search method 

with upper 
confidence bound 

A classical algorithm based on 
the Upper Confidence Bound 

(UCB) is proposed. A classical 
combination of the MCTS 

method with the UCB 
algorithm is proposed. 

A fundamental algorithm that 
laid the foundation for 

modern methods based on 
Monte Carlo Tree Search. 

Greedy TSM 
[19] 

Greedy method of 
TS minimization 

Research on minimization of 
TS based on a greedy algorithm 
depending on the size of input 

TS and test requirements. 

The results obtained prove 
the possibility of 

compressing TS to 50–75 % 
of the original size while 

maintaining coverage. 
Greedy TSM 

[20] 
Greedy method of 

TSM 
Proposed two-criteria 

optimization of TS based on a 
greedy algorithm. 

The effectiveness of the 
algorithm has been proven. 

The results obtained indicate 
a significant compression of 
TS while maintaining test 

requirements. 
Greedy TSM 

[21] 
Greedy method of 

TSM 
Analysis of the effectiveness of 
the method based on mutation 

testing. 

The possibility of compressing 
TS by an average of 70 % with 

high software defect 
detection capability has been 

proven.  
Greedy TSP 

[22] 
Greedy method of 

prioritizing TS 
Analysis of the application of 

the greedy method for 
prioritizing TS in regression 

testing. 

The results show a significant 
reduction in TS while 

maintaining the ability to 
detect software defects. 
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Continuation of the Table 1 
 

Research Method class Research features Research results 

Delta 
Debugging 
TSM [23] 

Delta debugging 
method for 

minimizing TS. 

A classic delta debugging 
algorithm, ddmin, is proposed. 

Significant reduction of input 
data without losing the ability 

to reproduce defects. 
Delta 

Debugging for 
Fault 

Localization 
[24] 

Delta debugging 
method for 

software defect 
localization. 

Application of DD for 
localization of test cases 

leading to reproduction of 
specified software defects.  

Significant reduction in input 
data without losing the ability 

to reproduce defects. 

Hierarchical 
Delta 

Debugging 
[25] 

Hierarchical 
modification of 

the delta 
debugging 
method for 

minimizing TS. 

Hierarchical version of DD for 
structured scenarios. 

Reduction of the time 
required to perform TS 

minimization while 
maintaining the effectiveness 

of reduced test cases. 

Probabilistic 
Delta 

Debugging 
[26] 

Stochastic 
modification of 

the delta 
debugging 

method for TS 
minimization. 

A proposed probabilistic model 
based on the delta debugging 

algorithm and the 
representation of code as an 

abstract syntax tree. 

The method considers the 
syntactic relationships 

between elements and the 
results of previous tests, 

which makes it possible to 
reduce the average 

processing time by almost 
27 % and reduce the size of 

the TS by 3.4 times 
compared to existing 

methods. 
 
To evaluate the effectiveness of the proposed method of TC forming based on a Q-learning 

agent, it is advisable to use those basic methods that: 
− do not require large training data sets or pre-trained models describing the expected 

behavior of the software; 
− can be applied to optimize TC for testing C++ libraries. 
Greedy TC optimization algorithms remain the most effective and stable for minimizing TS. 

Studies [19–22] show that TS minimization methods based on greedy algorithms provide 
 a significant reduction in TS size (up to 50–75 %) while maintaining the ability to detect software 
defects and preserving testing efficiency.  

TC optimization methods based on the delta debugging algorithm (classical admin, 
hierarchical and probabilistic modifications) [23–26] have stable results in the task  
of minimizing TC with an increase in the volume of input data. They ensure effective localization 
of minimal test cases subset while maintaining the ability to reproduce software defects. However, 
these methods only optimize the structure of existing test suite without forming new test cases at 
the API call level. 

Search methods on the Monte Carlo tree, including those based on the UCT  
algorithm [17–19], combine research and the use of acquired knowledge, making them relevant 
for the formation of TC in large action spaces.  
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At the same time, the application of the Monte Carlo method of TC optimization for  
C++ libraries requires adaptation: mechanisms are needed to verify the validity of the formed TC, 
determine the rational depth of the search tree, and limit the input data space. 

Other groups – evolutionary algorithms, metaheuristics, and hybrid methods [13–16] – 
demonstrate high efficiency on large input data space but are not effective in the task  
of optimizing TC for C++ libraries in the absence of a predefined software behavior model 
(without formal specifications). 

Therefore, for a comparative assessment of the effectiveness of the proposed method,  
the following were selected: 

− Greedy TC optimization algorithm; 
− Delta debugging algorithm for TC minimization; 
− Monte Carlo Tree Search method. 
Thus, the choice of these methods as basic ones is justified from both a theoretical and 

practical point of view. 
Purpose and objectives 
The purpose of the study is to evaluate the effectiveness of the method of forming TC for C++ 

libraries based on a Q-learning agent. 
To achieve this goal, the following tasks are set in the study: 
1. To improve the mathematical model of the Q-learning agent to increase the efficiency  

of TC formation for C++ libraries in conditions of high sparsity of the state space of the  
Q-learning agent. 

2. To investigate the influence of the parameters of the improved Q-learning agent model  
on the agent's behavior in such conditions. 

3. To consider the possibility of minimizing the obtained TC using the proposed TC formation 
method based on the delta-debugging algorithm for TS minimization. 

4. To evaluate the effectiveness of the proposed method in a unified TC formation 
environment, based on the original test suites of two open-source C++ libraries. Use the classic 
greedy TC optimization algorithm, the delta debugging TC minimization algorithm, and the TC 
optimization method based on Monte Carlo Tree Search as the main methods for comparison. 
 

Main part 
 

1. Classic Q-learning agent model 
 

The task of forming TC for C++ libraries without API specifications can be formalized as a 
Markov Decision Process (MDP) [27], where an agent builds a test case step by step, choosing the 
next action from the permissible API space: 

( ) ( )S,A,P s´ s,a ,R s,a , γ , 

where S  is the set of states corresponding to the state s ; A  is the set of permissible actions  
in the state s ; ( )s | s,a′P  is the probability function of transition to a new state after performing 
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the action 𝑎𝑎 in the state s ; ( )R s,a  is the reward function provided for performing an action  

a  in the state s ; ( )γ 0,1∈  is the discount factor. 
A test case of length t ∈N , which is formed as follows: 

t
1 2 t iTC a ,a , ,a ,   a    A= … ∈ ,             (1) 

consists of a sequence of a C++ library API calls. 
The classic Q -learning algorithm belongs to the class of reinforcement learning methods, 

which allow the agent to sequentially improve its action selection policy based on experience 
gained during an interaction with the environment. The agent's goal is to maximize the expected 
total reward by approximating the optimal action utility function: 

( ) ( )* t
t tt 0π

Q s,a max γ s ,a×∞

=
 =  ∑ RE ,            (2) 

where π  is the action selection policy.  
The formula considers the randomness of transitions between agent states by maximizing the 

mathematical expectation of the discounted sum of rewards. During training, Q -values  
are updated according to Bellman's rule: 

( ) ( ) ( ) ( ) ( )t t t t t t t 1 t ta
Q s ,a Q s ,a α R s ,a γ max Q s ,a Q s ,a

′ +
 ← + × + × −

′


,          (3) 

where ( ]0,1α ∈  is the learning rate multiplied by [ ]tδ = …  – the TDE (Temporal Difference Error, 

TDE). The agent sequentially updates Q -values in the Q -table, learning to distinguish useful 
actions (which increase the coverage or efficiency of the test case) from uninformative  
or redundant ones. 

The process of training an agent with reinforcement can be presented in the form  
of a diagram shown in Fig. 1. 

 
 

Fig. 1. Diagram of the reinforcement learning process for a Q -learning agent 
 
The agent interacts with the environment sequentially, selecting actions based on the Q -table, 

updating it based on the results of the test case execution and the rewards received. Each interaction 
cycle includes selecting an action, forming a partial test case, executing the action in the environment, 
receiving a reward or execution error, and updating the corresponding Q -values in the Q -table. 
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The classic Q -learning agent model allows the agent to be gradually trained in effective TC 
construction strategies. However, the application of the classic Q -learning agent model to solve 
the TC forming (optimization) problem for C++ libraries has a number of limitations: 

− explosion of the state space dimension. The space of all possible API call sequences grows 
exponentially depending on the complexity of the C++ library being tested. This approach leads 
to high sparsity of the agent's state space in the Q -table – a large number of states occur rarely or 
not at all, which complicates the generalization of the agent experience; 

− lack of generalization between similar states. Classical Q -learning stores Q -values for 
each specific state and does not take into account the structural similarity between agent states that 
have common call suffixes. This approach can reduce the stability and speed of learning. 

 
2. Improving the classic Q -learning agent model 

 
The shortcomings of the classical Q-learning agent model, such as the explosion of the state 

space dimension and the lack of generalization between similar agent states, are eliminated by 
introducing an improved agent model based on a mixed Q-value estimation. To reduce 
computational complexity, the state 𝑠𝑠𝑡𝑡 is restricted by introducing a test case suffix function.  

Thus, let there be a current sequence of API calls of the tested library at step 𝑡𝑡 that corresponds 
to a partially formed test case (1), and let  k ∈N  be the length of the call history.  

Then, in the previous model [1], the agent's state can be determined based on the last k  actions 
using the test case suffix function as follows: 

1

1

,   0
, ,  0

, ,  

k
t t

t k t

if t
s a a if t k

a a if t k− +

∅ =
← … < ≤
 … >

             (4) 

Unlike the classic single-layer Q-table, in which each state is stored separately, the proposed 
model uses a multi-layer structure with hierarchical merging of test case suffixes. Each partially 
formed test case tTC  has a set of suffixes calculated according to (4), which can be represented as 
follows: 

{ }| 1,..,i
suf tS s i k= = .              (5) 

This approach allows us to interpret the Q-table as a multilayer table: 

( ) ( )( ) ( )( ) ( )( ){ }0 1, , , , , , , kQ s a Q s a Q s a Q s a= … ,            (6) 

where ( )( )0,Q s a  is the evaluation for the initial state of the agent, ( )( ), kQ s a  is the evaluation for 

the suffix of the test case of depth k  . 
The concept of the spatial influence of TC suffixes is based on the theory of sequence 

generalization in reinforcement learning [28]. 
When updating Q-values according to (3), the agent distributes the TDE not only to the current 

state, but also to all its suffixes. Updates for each suffix depth level 1,..,i k=  are performed with 
an exponential decrease in weight: 
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( ) ( ) 1, ,  i i k i t
t t t tQ s a Q s a α λ δ+ −+ ×← × ,             (7) 

where ( )0,1λ ∈  is the decay coefficient of shorter TC suffixes influence.  

The proposed rule for updating a multilayer Q-table is based on the classical principles of 
reinforcement learning described in [29], which assume exponential decay of the influence  
of past states on the parameter. The use of λ  discounting in the structural dimension of shorter TC 
suffixes, as opposed to time discounting of rewards (eligibility traces), is based on the concept of 
state aggregation [30], which allows generalizing Q-values for similar states.  

When selecting an action a∈A , the Q-value estimate for available actions is calculated as 
the weighted average of Q-values calculated for all suffixes of the current state: 

( ) ( )( )1

1

,
,

k i
i t ti

k
ii

w Q s a
Q s a

w
=

=

=
×∑

∑
 ,    (8) 

iw  is the weight coefficient of the suffix i , which is determined by the following formula: 

( ) 1k i
i iw N βξ λ + −×= + ,     (9) 

where Ni  is the number of updates of the Q-table for the suffix i , ξ  is a small stabilizing term, 
and ( ]0,1β ∈  is the experience amplification coefficient.  

Thus, formula (8) describes the mechanism of generalizing Q-values in the proposed 
multilayer Q-table. The weights kw  combine the frequency of Q-table visits for TC suffixes and 
exponential decay, which reduces the influence of shorter TC suffixes. This approach allows the 
agent to use information from previous states.  

Procedure 1 for multi-layer generalization of Q-values based on current state suffixes is shown 
in Fig. 2. 

 
Procedure 1. Multi-layer generalization of Q-values based on current state suffixes (BlendQ-Table) 
Input data: 
− Q  – Q-table 
− A  – set of available actions 
−  ts – current state of the agent 
− λ  – decay coefficient of shorter suffix influence 
− β  – experience amplification coefficient 
 
Output data: 
− Q  – table of weighted average Q-values 

 
Procedure body: 
1. if =∅A      then return None 
2. local ,  ,sum aw w←∅ ←∅ Q ←∅  
3. for each a∈A   do 
4. for 1i =   to ( )tLen s  do 
5. local ( )Equation _ 4 , i

ts TC i←  

5. local ( )Equation _ 4 , i
ts TC i←  

6. if ( ),   ! 0i
tQ s a =   then 

7. local ( ),  i
i tN CountUpdates Q s←   

8. local ( )6 110 · k i
i iw N

β
λ− + −← +  

9. ( ) ( ) ( )· , i
a a i tw a w a w Q s a← +  

10. ( ) ( )sum sum iw a w a w← +  
11. end if 
12. end for 
13. if ( )  0sumw a >  then 
14. ( ) ( ) ( )/a sumQ a w a w a←  
15. else 
16. ( ) 610Q a −←  
17. end if 
18. end for 
19. return Q  

 
Fig. 2. Pseudocode of the procedure for multi-layer generalization of Q-values based on suffixes  

of the current state  
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Weighted averaging by Q-table visit frequency comes from [31, 32], which considers the role 
of visit frequency in stabilizing Q-values and preventing overestimation. 

During training, the agent applies an ε-greedy policy in which actions are selected based on 
multi-layer averaging of Q-values calculated for all suffixes of the current state according to 
equation (8). The probability of selecting an action ( )t ta s∈Α  in state ts  is defined as: 

( )
( )

( )
( )

t
t

a s
t

t

arg max Q s ,a 1 ε
a ,    

εrand  s  
∈′

 −= 


′
A

A
,     (10) 

where ( )0,1ε ∈  is the coefficient of stochasticity of the action space exploration.  

Thus, formulas (8), (9), and (10) describe the modified ε -greedy policy of the agent,  
in which the choice of action is made based on the averaged Q-values for all state suffixes.  
This policy combines the simplicity of classical Q-learning with the generalization of a multi-layer 
Q-table, increasing the stability of learning and the accuracy of test case construction. 

Algorithm 1 for agent training based on Q-learning is shown in Fig. 3, in which, unlike the 
classical version, the TDE is distributed among all suffixes of the current state.  
 

Algorithm 1. Agent training algorithm with multi-layer Q-table update 
Input data: 
− Q  – initial Q-table 
− 0TC  – original test case 
− ,  0k k∈ >N  – call history length 
− ( ]0 0,1 α ∈  – initial learning rate 
− ( ]0,1 finalα ∈  – final learning rate 
− ( )0 0,1 ε ∈  – initial exploration probability 
− ( )0,1 finalε ∈  – final probability of investigation 
− ( )0,1 γ ∈  – discount factor 
− epN ∈N  – number of learning episodes 
− retriesN ∈N  – maximum number of retries 
− λ  – decay coefficient of shorter suffixes 
influence 
− β  – experience amplification coefficient 
 
Initial data: 
− Q  – trained Q-table. 
 
Algorithm body: 
1. for ep = 1 to  epN do 
2. local  TC ← ∅  
3. local ( )0GetActionSpaceep TC←A  
 

4. local ( )orig oC GetCoverage TC←  
5. local  tC ← ∅  
6. local   epα ←  Linear ( )0Decay ,  , ,ep finalN ep α α  

7. local ( )0ε  LinearDecay ,  , ,ep ep finalN ep ε ε←  
8. local   0,totalR ←  oss 0,←L    ,  t ts a← ∅ ← ∅  
9. while     t origC C<  and not ( )Over epA  do 
10. local 0retryN ←  
11. local ( ), , ,   ,t epQ BlendQTable Q s λ β← A  
12. while retry retriesN N<  do 

13. ( )Equation _10 , , , εt t ep epa Q s←  A  

14. TC TC← ⧺ ta  
15. if ( ) isValid TC  then 
16. /ep ep ta←A A  
17. break 
18. else 
19.   / tTC TC a←  
20. 1retry retryN N← +  
21. end if 
22. end while 
23. if retry retriesN N>  then 
 

 
Fig. 3. Pseudocode of the agent learning algorithm based on Q-learning with multi-layer Q-table update 

(Beginning) 
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Algorithm 1. Agent training algorithm with multi-layer Q-table update 
24. break 
25. end if 
26. ( )1 Equation _ 4 , ts TC k+ ←  
27. local ( )Executetr TC←  
28. local ( ) ( )1max , ,t

t t t tr Q s a Q s aδ γ + −′← + ×  
29. for 1i =  to k  do 
30. ( )Equation _ 4 , i

ts TC i←  

31. ( ) ( ) 1, ,i i k i t
t t t tQ s a Q s a α λ δ+ −+ × ×←  

32. end for 
 

33. total total tR R r← +  
34. ( )1oss oss , , , ,  , t t t tQ r a s s γ+← +L L L  
35. 1t ts s +←  
36. ( )tC GetCoverage TC←  
37. end while 
38. ( )Log oss, totalRL  
39. end for 
40. return Q  
 

 
Fig. 3. Pseudocode of the agent learning algorithm based on Q-learning with multi-layer Q-table update 

(The end) 
 
Rule (7) is used to update the Q-table, and policy (10) is used to select actions. During 

learning, the learning rate and exploration probability change according to a linear decay law, 
which ensures a balance between exploration and exploitation of actions. 

The proposed Procedure 1 implements a mechanism of multi-layer generalization  
of Q-values for a set of available actions. For each suffix of the current state i

ts , a weight coefficient 

𝑤𝑤𝑖𝑖 is calculated, which takes into account the frequency of Q-table updates  
and the distance to the current state according to (9). 

The averaged estimates for each action ( )Q a  are formed as a normalized weighted average 

of Q-values across all suffixes. The resulting table is used by the agent to make decisions  
during training or TC forming according to ε -greedy policy.  

Thus, the proposed model provides a hierarchical generalization of the Q-table,  
allowing the agent to use the knowledge acquired in previous states during forming  
new sequences of actions. Such a multilayered representation of states increases resistance  
to high sparsity of the agent's state space and improves the agent's adaptation to heterogeneous 
API environments.After the training stage, the agent uses the obtained Q-table to form new TC. 
The pseudocode of Algorithm 2 for forming TC is shown in Fig. 4. 

Unlike the learning process, which uses an ε -greedy policy, at the TC formation stage, actions 
are selected using a softmax policy, which provides a smoother balance between exploration and 
exploitation of already accumulated knowledge.  

The probability of choosing an action ( ) t ta s∈Α  in state ts  can be determined as follows: 

( )
( )

( )

( )

t t

t

t

Q s ,a
τ

t t Q s ,a
τ

a s

eP a |s
e

′∈

′
=

∑





A

,     (11) 

where τ  is a temperature parameter that regulates the influence of stochasticity.  
In Algorithm 2, the agent sequentially builds a new TC using the trained Q-table. At each 

iteration, it forms the current state based on the latest calls, performs multi-layer generalization of 
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Q-values according to Procedure 1, and then selects the next action according to policy (11).  
To ensure the correctness of the formed test case, a mechanism for rolling back actions and 
checking the admissibility of transitions is provided.  

The algorithm ends when the reference coverage is reached or the action space is exhausted. 
 

Algorithm 2. Algorithm for forming a test case 
Input data: 
− Q  – Q-table 
− 0TC  – original test case 
− retriesN ∈N  – max. number of retries 
− τ – temperature for softmax action selection 
− λ  – decay coeff of shorter suffix influence 
− β  – experience amplification coefficient 
− δ  – coverage stability tolerance. 
 
Initial data: 
− TC  – formed test case 
 
Algorithm body: 
1.  TC ← ∅  
2. ( ) Extractk Q←  
3. ( )orig oC GetCoverage TC←  
4. ( )GetActionSpace oTC←A  
5. 0tC ←  
6. while t origC C<  and not ( )isOver  A do 
7. local 0retryN ←  
8. local ( )Equation _ 4 , ts TC k←  
9. local 0ta ←  

10. local ( ), , , ,tQ BlendQTable Q s λ β← A    
11. while retry retriesN N<  do 
12. ( )Equation _11 , , ,t ta Q s τ←  A  
13. TC TC← ⧺ ta  
14. if ( )isValid TC  then 
15. / ta←A A  
16. break 
17. else 
18. / tTC TC a←  
19. 1retry retryN N← +  
20. endif 
21. end while 
22. if   retry retriesN N>  then 
23. break 
24. endif 
25. ( )tC GetCoverage TC←  
26. if  t origC C δ> +  then 
27. break 
28. endif 
29. end while 
30. return TC  
 

 
Fig. 4. Pseudocode of the test scenario formation algorithm 
 

Thus, within the scope of the study, model [1] has been extended to improve the stability  
of learning and generalization of the action selection policy.  

The main changes include the following: 
− multi-layer updating of the Q-table: in the proposed version, the agent distributes the 

temporal difference error among all suffixes of the current state, rather than just for one suffix  
of length 𝑘𝑘, which allows the context of previous partial test case to be taken into account and 
ensures better policy generalization; 

− averaging of Q-values: for each state, a weighted generalization of estimates for all suffixes 
is performed using weight coefficients defined in (9); 

− action selection policy: during training, an ε-greedy policy is used, taking into account the 
averaged Q-values, and during the TC formation the softmax policy is used (11). 
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3. Evaluation of the effectiveness of TC optimization algorithms and methods 
 

The following three basic metrics are used to evaluate the effectiveness of TC optimization 
algorithms and methods [3]: 

1. Retention of Coverage (RC) coefficient – evaluates the increase in original TS branch 
coverage, reflecting the loss or retention of testing efficiency: 

( )
( )

out

orig

Cov TSRC Cov TS= ,     (12) 

where ( )outCov TS  is the TS coverage after optimization,   ( )origCov TS  is the coverage of the original 

TS; 
2. Compression Ratio (CR) – evaluates the reduction in the number of test case instructions: 

( ) ( )( )
( )

orig out

out

Len TS Len TS
CR Len TS

−
= ,    (13) 

where ( )origLen TS  is the number of instructions in the original TS, ( )outLen TS  is the number of 

instructions after optimization. 
3. Execution Cost Reduction (ECR) – estimates the reduction in time required to execute the 

test suite: 

( ) ( )( )
( )

orig out

out

T TS T TS
ECR T TS

−
= ,    (14) 

where ( )origT TS  is the time required to execute the original TS, and ( )outT TS  is the time required 

to execute the TS after optimization.  
To evaluate the effectiveness of the proposed method, three basic classical methods of TC 

optimization are used: Greedy Reduction (GR), Delta Debugging (DD), and Monte Carlo Tree 
Search (MCTS). 

Greedy Reduction. The GR method forms a TC by sequentially selecting actions that provide 
the greatest increase in branch coverage. At each iteration, an action is selected *a ∈Α , which 
maximizes the coverage difference: 

( ) ( )( )*

a
a arg max Cov TC a Cov TC

′∈
−′= ⊕

A
.          (15) 

Greedy optimization methods are widely used in TS minimization problems due to their 
simplicity of implementation. However, they are prone to getting stuck in local optima and are 
sensitive to the initial order of actions [21]. 

Delta debugging. The DD method is based on iterative removal of actions from the TC to 
eliminate redundancy without losing testing efficiency. At each step, the equivalence of the 
specified criterion between the initial and reduced TC is checked. In particular, the execution error 
is preserved [33]. 

Search in the Monte Carlo tree. The MCTS method constructs a tree of possible test cases, 
where nodes correspond to states and edges correspond to API actions.  

Actions are selected based on the Upper Confidence Bound (UCB) criterion [18, 34]: 
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( ) i
i

i i

w ln NUCT v c
n n

= + × ,      (16) 

where iw  is the total reward for node   iv , in  is the number of visits to node iv , N  is the number 

of visits to the parent node, and 0c >  is a parameter that controls the balance between exploitation 
and exploration.  

After selecting a branch, the TC simulation stage is performed, the reward for the achieved 
coverage is evaluated, and the reward is redistributed according to the following formula: 

i i i i in n 1,   w w r← + ← + ,           (17) 

where ir  is the simulation reward.  

MCTS effectively explores a large space of possible test cases and gradually refines the policy 
of action selection, making it suitable for use as the main method of TC optimization. 
 

Research results 
 

1. Environment setup 
 

To evaluate the effectiveness of the methods, two open-source C++ libraries were selected, 
which differ in scale and structural complexity. The main characteristics are shown in Table 2.  

The lizard utility was used to analyze the number of lines of code and cyclomatic complexity 
of the target libraries. The following abbreviations are used in Table 2: 

− API – number of public functions of the target C++ library; 
− LoC – number of lines in the source code; 
− TCN – number of test cases in the test suite; 
− IC – total number of instructions in the test suite; 
− BC – branch coverage of original test suite; 
− Avg.CCN – average cyclomatic complexity of the library functions. 
 
Table 2. Characteristics of C++ libraries selected for research 

 

Library API LoC TCN IC BC, % Avg. CCN 

Bitmap 
PlusPlus 33 760 7 71 27 2.5 

Hjson 122 3936 57 1259 36.1 5.4 
 
The evaluation was performed on a workstation with an Intel Core i7 processor (6 cores,  

2.6 GHz) and 16 GB of RAM.  
The libraries and their test suites were compiled using AppleClang 15.0.0 (LLVM 15)  

with coverage profiling options (-fprofile-instr-generate fcoverage-mapping) enabled.  
The llvm-profdata and llvm-cov utilities were used to collect and analyze branch coverage. 
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The parameters for training the Q-learning agent are consistent with the previous 
implementation described in [1] and ensure stable convergence of the utility function in conditions 
of high dimensionality of the action space. Table 3 lists the configuration parameters used for all 
experiments, unless otherwise specified. 

 
Table 3. Configuration of the Q-learning agent training according to Algorithm 1 
 

Parameter name Designation Value 
Number of episodes epN  1000 

Maximum number of retries retriesN  30 
Initial probability of investigation 0ε  1 
Final probability of investigation finalε  0 

Initial learning rate 0α  0.3 
Final learning rate finalα  0.1 

Discount factor γ  0.85 
Experience amplification factor β  1 

 
 

2. Analysis of the impact of parameters of the improved Q-learning agent model  
 

The parameter 𝑘𝑘 determines the length of the call history used in forming the agent's state.  
To study its impact, modeling was performed on the Hjson and BitmapPlusPlus libraries, where 
the relative frequency of state-action pairs occurrences in the Q-table during training in 
dependence to test case suffix length was analyzed. 

Fig. 5, a shows the dependence of the relative frequency of finding records (suffixes) in the 
Q-table on the parameter k  for the BitmapPlusPlus library.  

It can be observed that as k  increases, the number of records found in the Q-table decreases, 
which indicates an increase in the sparsity of the agent's state space. For 4k ≥ , most suffixes occur 
rarely, which leads to a deterioration in policy generalization. 

Fig. 5, b shows a similar dependence for the Hjson library, which is characterized by a more 
branched API call structure. Up to 3k ≤ , the proportion of states found remains virtually constant. 
Starting from 4 k = , there is a sharp drop in relative frequency, and for 6k ≥ , most suffixes occur 
very rarely, indicating a loss of the agent's generalization ability, which begins to accumulate 
unique but uninformative states.  

Thus, the optimal choice is the value of the suffix 5k = , which provides a compromise 
between context depth and stability of Q-value updates. 

To assess the impact of the parameter λ  on learning efficiency, we chose the indicator  
of the proportion of suffixes found, i.e., the fraction of the discovered state-action pairs in the  
Q-table, e.g. the states that the agent has already encountered in previous learning episodes to the 
total number of transitions between the agent's states during training.  

This indicator allows us to quantitatively assess the agent's ability to reuse experience when 
making decisions. 
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a)                                                       b) 

Fig. 5. Relative frequency of state-action pairs occurrences in the Q-table during training  
 of the Q-learning agent on the Hjson (b) and BitmapPlusPlus (a) libraries 

 
Figure 6, a shows the results for the BitmapPlusPlus library. As λ  increases, the proportion 

of suffixes found initially increases, reaching a maximum at 0,7λ = , indicating the most efficient 
reuse of experience. A further increase in λ  causes a decrease in the indicator, as the agent begins 
to rely too much on the experience of shorter suffixes, reducing the number of transitions learned. 

A similar trend is observed for the Hjson library (Fig. 6, b). An increase in the proportion  
of suffixes found to 0,7λ ≤  indicates a gradual increase in policy stability and improved 
consistency of Q-table updates. At 0,9λ = , the indicator decreases slightly. 
 

 
a)                                                             b) 

Fig. 6. Dependence of the average fraction of discovered state-action entries int the Q-table  
 on the coefficient λ  during training on the Hjson (b) and BitmapPlusPlus (a) libraries 

 
Thus, a comparative analysis of the two C++ libraries indicates that excessively low values of 

λ  lead to a loss of generalization, while excessively high values lead to a decrease in the use of 
knowledge from the Q-table. The optimal choice is a decay coefficient for shorter suffixes  
of TC equal to 0,7λ = . This value provides the best compromise between exploiting previous 
experience and exploring new states, which confirms the stability of the policy for different types  
of C++ libraries. 
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3. Evaluation of the effectiveness of the TC formation method for 
 C++ libraries based on a Q-learning agent  

 
For comparative analysis, three basic methods and two groups of configurations of the 

proposed method were used: 
− configuration of the classic greedy algorithm for TC formation (GR); 
− configuration of the classic delta debugging algorithm for TS minimization (DSL); 
− configurations for forming TC using the Monte Carlo tree search method (MCTS1, 

MCTS2, MCTS3); 
− configurations of the TC formation method based on a Q-learning agent (QLB-M1,  

QLB-M2, QLB-M3); 
− configurations of the TC formation method based on a Q-learning agent and a post-

processing filter based on the delta debugging algorithm for TS minimization (QLB-MD1,  
QLB-MD2, QLB-MD3). 

For each algorithm configuration, 100 independent mathematical simulations were performed 
on each target library. The configuration parameters are shown in Tables 4 and 5. 

 
Table 4. Configurations for TC formation by a Q-learning agent according to Algorithm 2 
 

Configuration Temperature, 
τ 

Coefficient, 
𝛌𝛌 

Coefficient, 
𝛃𝛃 

QLB-M1 1.5 0.7 1 
QLB-M2 3 0.7 1 
QLB-M3 5 0.7 1 

 
In the current implementation, the experience amplification factor 𝛽𝛽 is fixed at 1, which 

corresponds to linear consideration of the update frequency without additional experience 
amplification.  

Thus, the weights of suffixes are determined only by their visit frequency and exponential 
decay based on the 𝜆𝜆 parameter. 

 
Table 5. Configurations for forming TC using the Monte Carlo Tree Search method 

 

Configuration Coeff., 𝒄𝒄 Number of 
iterations 

MCTS1 0.7 200 
MCTS2 1.4 200 
MCTS3 2.0 200 

 
The distribution of branch coverage metrics for the BitmapPlusPlus library (Fig. 7, a) shows 

that the classical DSL and GR methods consistently maintain the initial coverage level 
corresponding to the original TS.  

The MCTS method demonstrates a moderate increase in average coverage.  
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However, it is characterized by limited variability of results due to the stochastic, but not 
learning, nature of the search. 

The proposed QLB-M and QLB-MD configurations provide a significant improvement in 
performance, with median coverage values exceeding 32 %. This improvement is explained by the 
ability of the Q-learning agent to generalize the experience of previous episodes,  
and the subsequent application of delta debugging allows to maintain and increase coverage  
after reducing the TC. 

A similar trend is observed for the Hjson library (Fig. 7, b). The classical DSL and  
GR methods hardly change the initial coverage level (36.1 %), while MCTS provides a non-stable 
increase to 37 %.  

In contrast, the proposed QLB-M and QLB-MD configurations demonstrate a systematic 
increase in both the median and upper quartiles of the distribution, reaching a peak  
value of 37.5 %.  

Thus, the agent is capable of effectively reproducing complex combinations of API calls in 
libraries with deep structural dependencies.  

 

 
a)                                                                 b) 

Fig. 7. Distribution of branch coverage metrics depending on the configuration of the TC optimization 
method for the BitmapPlusPlus (a) and Hjson (b) libraries, where: the dotted line indicates  
the coverage level of the original TS 

 
Fig. 8 shows the results of comparing the dynamics of branch coverage growth during the 

execution of TC formed using different optimization methods.  
The curves obtained reflect the relationship between the number of instructions executed and 

the achieved level of branch coverage of the code. 
The dotted horizontal line indicates the coverage level of the original TS, and its intersection 

with the curve of a specific method corresponds to the number of instructions for which adequate 
compression ratio is maintained without loss of code coverage.  
 



 
Автоматизовані системи управління та прилади автоматики. 2025. № 4 (187)  
 

 

38 

 

 
a)                                                                         b) 

Fig. 8. Dependence of branch coverage on the number of executed TC instructions for different TC 
 optimization methods for BitmapPlusPlus (a) and Hjson (b) libraries 

 
Fig. 9 shows the dependence of the compression ratio on the configuration of TC optimization 

methods for the BitmapPlusPlus and Hjson libraries. 
 

 
a)                                                                            b) 

Fig. 9. Compression ratio depending on the configuration of optimization methods for the 
  BitmapPlusPlus (a) and Hjson (b) libraries, where: the red segments  
  on the columns indicate the standard error 

 
For the BitmapPlusPlus library (Fig. 9, a), there is a gradual increase in the compression ratio 

from classical methods (DSL, GR) to the proposed configurations (QLB-M, QLB-MD).  
The DSL and GR methods show average values of 0.5–0.6, which corresponds to the basic 

level of reduction without taking into account the dependencies between API calls.  
The MCTS method shows similar results (≈ 0.45), since stochastic TC formation does not 

guarantee avoidance of redundant actions.  
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The proposed QLB-M method improves this indicator to 0.55–0.6.  
The highest results are achieved in QLB-MD configurations, where the delta debugging 

algorithm is applied as a post-processing filter after the Q-learning agent formation stage.  
This approach enables the median compression ratio values exceed 0.8, which indicates  
a significant reduction of TC without loss of coverage. 

For the Hjson library (Fig. 9, b), the indicators turned out to be more variable due to the more 
complex structure of API calls and the greater depth of the call tree. 

The basic DSL method shows the highest compression ratio (~ 0.83), while GR is significantly 
lower (~ 0.6) due to the lack of consideration of dependencies between actions.  

Stochastic MCTS configurations remain within the range of 0.48–0.5, reflecting low reduction 
efficiency without explicit coverage analysis.  

QLB-M configurations show a steady increase in compression ratio (≈ 0.7–0.75), while QLB-
MD combinations show the highest results (0.82–0.86) with low variance, indicating the stability 
of the effect after training. 

Fig. 10 shows the results of evaluating the average execution time of TS for the 
BitmapPlusPlus and Hjson libraries. 

 

 
a)                                                                                       b) 

Fig. 10. Average TS execution time depending on the configuration of TC optimization methods for the    
BitmapPlusPlus (a) and Hjson (b) libraries, where: the red segments on the columns represent the 
standard error, and the dotted line corresponds to the execution time of the original TS 

 
For the BitmapPlusPlus library (Fig. 10, a), there is a clear decrease in execution time from 

classical methods (DSL and GR) to the proposed ones (QLB-M and QLB-MD).  
The basic configurations show the biggest average time (55–60 ms).  
The MCTS configurations show a reduction in time to 40–42 ms. However, they do not 

achieve significant improvements due to the lack of generalized experience.  
The QLB-M method provides a further reduction in average time to 20–35 ms due to the 

ability of the Q-learning agent to build shorter and more focused sequences of actions. 
QLB-MD configurations show the highest efficiency, where the combination of learning and 
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delta debugging reduces the average execution time to 12–30 ms. That is, almost three times less 
than the basic methods. 

For the Hjson library (Fig. 10, b), the trend generally remains the same. However, the 
difference between configurations is less pronounced due to the greater depth of calls and 
structural complexity of the library.  

The DSL method provides the lowest time among the classic basics (~ 30 ms), while GR 
shows higher values (~ 50 ms), which indicates its low stability when working with more complex 
C++ libraries.  

The MCTS method maintains a time of 45–53 ms with little variation, while QLB-M gradually 
reduces it to 40–45 ms.  

The QLB-MD configuration group provides the lowest results (18–25 ms) while maintaining 
a high level of coverage and compression ratio, indicating effective coordination of TC 
optimization processes and reduction of redundant calls in a complex environment. 

To evaluate the effectiveness of the methods under study, a comparative analysis  
of the average TS formation time was performed (Fig. 11). 

 

 
a)                                                                                       b) 

Fig. 11. Average TS formation time for TC optimization methods for BitmapPlusPlus (a)  
 and Hjson (b) libraries 

 
The graphs show that the basic DSL and MCTS2 methods have the highest time costs, while 

GR shows the fastest formation due to simple heuristics.  
The improved QLB-M2 and QLB-MD2 methods show a significant reduction in formation 

time compared to the basic methods, while maintaining stability and moderate variability of 
results. 

Tables 6 and 7 show the summary results of the evaluation of the effectiveness of the 
configurations of the studied methods for the C++ libraries BitmapPlusPlus and Hjson. 

For the BitmapPlusPlus library (Table 6), the basic DSL and GR methods retain the original 
coverage (RC = 1), but are characterized by a moderate level of compression (CR = 0.54–0.63) 
and a low reduction in execution time (ECR ≈ 0.15–0.20).  

MCTS search variants increase coverage by ≈ 9 % (to RC ≈ 1.09) and reduce execution time 
by ≈ 20 %. However, they do not provide a high value of compression ratio.  
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The proposed QLB-M configurations provide a coverage gain of up to ≈ 1.22, a compression 
ratio of 0.55–0.61, and a reduction in ECR execution time of ≈ 0.7–0.8.  

The highest results were achieved for QLB-MD, where the combination of Q-learning with a 
delta debugging algorithm filter enables for a ≈ 22 % increase in branch coverage, compression 
ratio of up to 0.8, and a 70–85 % reduction in ECR execution time. 

 
Table 6. Evaluation of the effectiveness of the configurations of the studied methods 

for the BitmapPlusPlus library 

 

Configuration RC CR ECR 
DSL 1 0.63 0.19 ± 0.02 
GR 1 0.54 0.15 ± 0.03 

MCTS1 1.091 ± 0.02 0.46 ± 0.02 0.23 ± 0.015 
MCTS2 1.092 ± 0.02 0.46 ± 0.03 0.23 ± 0.016 
MCTS3 1.093 ± 0.02 0.46 ± 0.03 0.21 ± 0.015 

QLB-M1 1.116 ± 0.08 0.61 ± 0.08 0.79 ± 0.07 
QLB-MD1 1.127 ± 0.08 0.81 ± 0.02 0.85 ± 0.04 
QLB-M2 1.215 ± 0.10 0.55 ± 0.08 0.62 ± 0.15 

QLB-MD2 1.225 ± 0.10 0.78 ± 0.02 0.71 ± 0.18 
QLB-M3 1.153 ± 0.09 0.57 ± 0.07 0.72 ± 0.13 

QLB-MD3 1.163 ± 0.09 0.78 ± 0.02 0.78 ± 0.12 
 
For the Hjson library (Table 7), the results are similar, but with less pronounced differences 

between methods due to the greater complexity of the internal structure of API calls.  
 
Table 7. Evaluation of the effectiveness of the configurations of the studied methods 

for the Hjson library 
 

Configuration RC CR ECR 
DSL 1.000 0.83 0.61 ± 0.05 
GR 0.982 0.6 0.23 ± 0.00 

MCTS1 0.969 ± 0.03 0.51 ± 0.01 0.39 ± 0.03 
MCTS2 0.981 ± 0.03 0.52 ± 0.00 0.40 ± 0.005 
MCTS3 0.988 ± 0.03 0.48 ± 0.00 0.34 ± 0.07 
QLB-M1 1.008 ± 0.01 0.74 ± 0.02 0.41 ± 0.11 

QLB-MD1 1.012 ± 0.01 0.82 ± 0.09 0.70 ± 0.07 
QLB-M2 1.002 ± 0.01 0.73 ± 0.03 0.40 ± 0.04 

QLB-MD2 1.008 ± 0.01 0.84 ± 0.08 0.71 ± 0.074 
QLB-M3 0.996 ± 0.01 0.74 ± 0.02 0.42 ± 0.11 

QLB-MD3 1.000 ± 0.01 0.86 ± 0.01 0.74 ± 0.039 
 
The main DSL method maintains full coverage (RC = 1) and provides a high compression 

ratio (CR = 0.83) at ECR ≈ 0.61. 
The GR method shows a decrease in coverage (RC = 0.98) and lower efficiency in reducing 

execution time (ECR ≈ 0.23). 
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MCTS search configurations achieve a moderate reduction in time (ECR ≈ 0.34–0.40) with 
stable but slightly lower coverage than the original TS.  

QLB-M methods provide a balance between coverage (RC ≈ 1.00–1.01), compression  
ratio (0.73–0.74), and execution time reduction (ECR ≈ 0.4).  

QLB-MD configurations show the highest results: RC ≈ 1.00–1.01, CR ≈ 0.84–0.86,  
ECR ≈ 0.70–0.74, which confirms the stability and effectiveness of the proposed method in 
conditions of deeper data structures in complex C++ libraries. 

Thus, for both libraries, the QLB-MD configurations are the most effective, providing  
a balanced increase in coverage (up to + 22.5 %), compression ratio (up to 0.86),  
and a significant reduction in TS execution time.  

To summarize the results of the comparison of methods, radial diagrams were  
built (Fig. 12), which reflect the relationship between the three main coefficients of effectiveness 
for the methods under study. 

 

 
a)                                                                                                 b) 

Fig. 12. Radial diagrams of the effectiveness of methods for the BitmapPlusPlus (a) 
 and Hjson (b) libraries 

 
Thus, the combination of the Q-learning mechanism with delta debugging action filtering 

provides comprehensive optimization of the TC and increases the efficiency of the testing process 
without losing coverage quality.  
 

Conclusions 
 

Thus, this article evaluates the effectiveness of the method of forming TC for C++ libraries 
based on a Q-learning agent. The proposed method combines step-by-step formation of function 
call sequences based on Q-learning with a post-processing filter based on the delta debugging 
algorithm. 

Unlike classical greedy and search-based optimization methods, the proposed agent 
adaptively takes into account previous experience, balancing between exploring new states and 
using already known trajectories, which increases the ability to generalize experience and the 
stability of learning.  
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Analytical research of the parameters of the mathematical model indicates that the optimal 
length of the call history k  is 5, since with a deeper history there is a sharp decrease in the 
frequency of finding states in the Q-table.  

Research into the parameter of the mathematical model of the decay of shorter suffixes λ  
shows maximum efficiency at a value of 0.7, when the agent demonstrates the highest proportion 
of use of accumulated experience, reflecting the system's ability to maintain a balance between 
stability and flexibility of learning. 

A comparative assessment of effectiveness with the main methods showed the advantage  
of the developed method in all key testing effectiveness criteria, which have the following average 
values: coverage retention coefficient up to 1.225, compression ratio up to 0.86,  
and TS execution time reduction ratio up to 0.74. 

The improved mathematical model provides generalization of the Q-learning agent’s 
experience between similar TC and increases the efficiency of their formation in conditions  
of high sparsity of the state space of the Q-learning agent. Unlike the classical mathematical model 
of Q-learning, in which Q-values are updated only for the current state of the agent (test case 
suffix), in the proposed model, the temporal difference error is distributed among all test case 
suffixes with the decay of influence of the shorter suffixes. Thus, according to the results  
of evaluating the effectiveness of the method of forming TC for C++ libraries based  
on a Q-learning agent, its effectiveness in solving the problem of forming (optimization) of TC for 
C++ libraries, which allows reducing the length of original TS without losing the branch coverage 
of the C++ library code being tested and reducing its execution time.  

Further research directions may include the formation of test cases for C++ libraries based on 
a deep learning agent with reinforcement and the application of the proposed method  
of forming (optimizing) test cases for software developed using other programming languages. 
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ОЦІНЮВАННЯ ЕФЕКТИВНОСТІ МЕТОДУ ФОРМУВАННЯ 
ТЕСТОВИХ СЦЕНАРІЇВ ДЛЯ C++ БІБЛІОТЕК  

НА ОСНОВІ АГЕНТА З Q-НАВЧАННЯМ 
 
Оптимізація тестових сценаріїв (ТС) є необхідною умовою підвищення ефективності регресійного 
тестування C++ бібліотек. Предметом дослідження є методи формування (оптимізації) ТС для  
C++ бібліотек. Мета роботи – оцінити ефективність методу формування ТС для С++ бібліотек на основі 
агента з Q-навчанням. Завдання дослідження: удосконалити математичну модель агента  
з Q-навчанням для підвищення ефективності формування ТС для С++ бібліотек в умовах високої 
розрідженості простору станів агента з Q-навчанням; дослідити вплив параметрів удосконаленої моделі 
агента з Q-навчанням на його поведінку за такими умовами; розглянути можливість мінімізації 
сформованих ТС методом їх формування завдяки алгоритму дельта-дебаггінг мінімізації ТС; оцінити 
ефективність запропонованого методу й порівняти з відомими методами оптимізації ТС.  
Методи дослідження. У роботі застосовано метод пошуку на дереві Монте-Карло, класичну 
математичну модель Q-навчання, алгоритм дельта-дебаггінг мінімізації ТС і жадібний алгоритм 
оптимізації ТС. Ефективність запропонованого методу оцінено на двох C++ бібліотеках з відкритим 
вихідним кодом за допомогою статистичного аналізу 100 математичних моделювань конфігурацій 
методів, які досліджуються. Досягнуті результати: оцінка ефективності вказує на те, що 
запропонований метод забезпечує такі середні значення показників ефективності оптимізації ТС для С++ 
бібліотек: коефіцієнт збереження  покриття становить до 1.225, коефіцієнт стиснення тестового набору 
(ТН) – до 0.86 й коефіцієнт скорочення часу на виконання ТН – до 0.74. Установлено, якщо порівнювати 
з жадібним алгоритмом оптимізації ТС, дельта-дебаггінг алгоритмом мінімізації ТС та методом 
оптимізації ТС на основі пошуку на дереві Монте-Карло, то запропонований метод має суттєве 
підвищення ефективності формування (оптимізації) ТС для С++ бібліотек.  
Висновки. Удосконалена математична модель забезпечує узагальнення досвіду агента з Q-навчанням 
між подібними ТС і підвищує ефективність їх формування в умовах високої розрідженості простору 
станів агента з Q-навчанням. Отже, за результатами оцінювання методу формування ТС для  
С++ бібліотек на основі агента з Q-навчанням підтверджено його доцільність у розв’язанні задачі 
формування (оптимізації) ТС для C++ бібліотек, що дає змогу скоротити довжину ТС без втрати 
гілкового покриття коду С++ бібліотеки, яка тестується, і зменшити час на виконання ТН. Подальші 
дослідження будуть присвячені формуванню ТС для С++ бібліотек на основі агента глибинного 
навчання з підкріпленням. 

Ключові слова: оптимізація тестових сценаріїв; тестування програмного  
забезпечення; Q-навчання; Q-таблиця; дельта-дебаггінг, покриття коду; мінімізація; C++; агент; 
навчання з підкріпленням. 
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