UDC 004.415.2:004.415.53 DOI: https://doi.org/10.30837/0135-1710.2025.187.020

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

M. Hulevych

EVALUATION OF THE EFFECTIVENESS OF THE TEST CASE
FORMING METHOD FOR C++ LIBRARIES BASED
ON A Q-LEARNING AGENT

Effective optimization of test cases (TC) is a prerequisite for improving the effectiveness of regression testing
of C++ libraries. The subject of the study is methods for forming (optimizing) TC for C++ libraries. The purpose
of the work is to evaluate the effectiveness of the method of forming TC for C++ libraries based on a Q-learning
agent. Research tasks: to improve the mathematical model of a Q-learning agent to increase the efficiency
of forming TC for C++ libraries in conditions of high sparsity of the state space of the Q-learning agent;
to investigate the influence of the parameters of the improved Q-learning agent model on its behavior under such
conditions; to consider the possibility of minimizing the formed TC by the method of their formation using the delta-
debugging algorithm for TC minimization; to evaluate the effectiveness of the proposed method and compare it with
known TC optimization methods. Research methods. The work uses the Monte Carlo Tree Search method, the
classical mathematical model of Q-learning, the delta debugging algorithm for TC minimization, and the greedy
algorithm for TC optimization. The effectiveness of the proposed method was evaluated on two open-source
C++ libraries using statistical analysis of 100 mathematical simulations of the configurations of the methods under
study. Results achieved: the effectiveness evaluation indicates that the proposed method provides the following
average values of TC optimization effectiveness coefficients for C++ libraries: the coverage retention ratio is
up to 1.225, the test suite compression ratio is up to 0.86, and the test suite execution time reduction ratio is
up to 0.74. It has been established that, when compared with the greedy optimization algorithm, the delta debugging
minimization algorithm, and the optimization method based on Monte Carlo Tree Search, the proposed method
significantly improves the efficiency of TC formation (optimization) for C++ libraries. Conclusions. The improved
mathematical model provides generalization of the experience of the Q-learning agent between similar test cases and
increases the efficiency of their formation in conditions of high sparsity of the state space of the Q-learning agent.
Thus, the results of evaluating the method of forming TC for C++ libraries based on a Q-learning agent confirm its
feasibility in solving the problem of forming (optimization) of TC for C++ libraries, which makes it possible to reduce
the length of TC in the test suite without loss of the branch coverage of the C++ library code being tested and to reduce
the execution time of TS. Further research will be devoted to the formation of TC for C++ libraries based on a deep
reinforcement learning agent.

Keywords: test case optimization; software testing; Q-learning; Q-table; delta debugging; code coverage;
minimization; C++; agent; reinforcement learning.

Introduction

Software testing is a key element of software quality assurance. The testing process uses test
suite (TS) consisting of test cases (TC) for interaction with the corresponding software interfaces
of C++ libraries and their components.

TC for C++ libraries and C++ libraries are developed in parallel, reflecting the practical
features of using the APl (Application Programming Interface, API) of the tested code.
They accumulate throughout the software development life cycle and gradually cover
a significant part of the functionality, as well as being the main source for verifying the correct

© Hulevych M., 2025

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

behavior of the output software product when changes are made to the code base. As the volume
of such test cases increases, the cost of regression testing increases in both time
and computational terms.

C++ software libraries are used in large projects for image processing, file system operations,
data analysis, etc. In such conditions, changes to the C++ library code Ilead
to the need to re-execute a significant amount of TC in redundant TS to detect software regression
defects.

The execution time of C++ library TS can be reduced by optimizing the TC in the original
TS. Thus, the task of TC optimization (Test Case Optimization, TCO) without loss
of coverage is a relevant task that allows reducing testing costs, improving the informativeness of
TC execution results, and, as a result, ensuring the effectiveness of regression testing.

Previous studies have proposed a method for forming TC for C++ libraries based on
a Q-learning agent, which reduces the size of original TS without loss of branch coverage
of the code [1]. To justify the effectiveness of the proposed method, it is advisable to conduct
a comparative analysis with relevant TC optimization methods.

Analysis of literature

Over the past decade, a number of review papers have been published that provide
a fundamental understanding of existing TC optimization methods and criteria for evaluating their
effectiveness. Systematic reviews [2-4] provide a basis for understanding the task of TC
optimization, covering a broad classification of TC optimization methods, as well as the features
of software environments for researching TC optimization methods.

The importance of preserving the semantics of the original test suite, forming adequate criteria
for evaluating effectiveness, and adhering to the methodological foundations
of researching TC optimization methods is emphasized separately.

The task of TS optimization consists of three interrelated tasks: TCS (Test Case Selection,
TCS), TSP (Test Suite Prioritization, TSP), and TSM (Test Suite Minimization, TSM) [5].
The purpose of TCS is to determine a subset of TC that need to be re-executed after changes in the
program code of the library being tested. The purpose of TSP is the ordering of test cases in order
to maximize the speed of software defect detection. TSM removes redundant TC from the TS
while maintaining testing efficiency, thereby reducing the time required to execute the TS.

Machine learning is used to optimize TS [6]. In particular, clustering algorithms are effectively
used to reduce redundancy in TS and prioritize the TC [7].

They are capable of operating based on the performance characteristics of C++ library tasks,
which makes them useful for optimizing TC for C++ libraries without formal specifications
(documented requirements for C++ library behavior). Reinforcement learning can also be
effectively applied in these conditions [8].

An important factor in evaluating the effectiveness of TC optimization methods is the
classification into adequate and inadequate methods, as formulated in [9]. According to this
classification, adequate (coverage-preserving) TC optimization methods are those that ensure
the preservation of the full level of testing effectiveness relative to the original TS.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

After optimization, an adequate method guarantees that all structural (behavioral) constructs
of the software that were tested by the original test cases remain covered by the new test cases.

Thus, the adequacy characteristic is critically important in terms of the suitability of the TC
optimization method for regression testing, where the loss of the test case's ability to detect defects
in the software under test is unacceptable.

In contrast, non-coverage-preserving methods allow for a partial loss of testing effectiveness
in order to achieve higher test case compression rates. Inadequate methods can significantly reduce
the amount of test coverage by reducing the ability to detect software defects, makingthem
unsuitable for TC optimization for highly reliable software systems or libraries.

The need for adequate TC optimization methods is also confirmed by an analysis
of the peculiarities of testing C++ libraries [10], which focuses on the following aspects:

— the absence of formal API specifications in open-source C++ libraries, which increases the
role of methods capable of working in such conditions;

— the need to analyze the dependencies between test case instructions during execution in
order to optimize the TC effectively;

— the complexity of the execution environment of C++ software, which necessitates flexible
methods for forming TC for C++ libraries.

The author's previous work [1] provides a thorough overview of TC optimization methods —
delta debugging, dynamic slicing, integer linear programming (ILP) TC optimization methods,
methods based on classification and clustering, as well as hybrid methods.

To expand the analytical context of the previous work and clarify the role of individual
methods in modern TC optimization research, Table 1 provides a comparative description

of recent studies of TC optimization methods in different classes of problems.

Table 1. Comparative characteristics of studies of TC optimization methods in different classes

of problems
Research Method class Research features Research results
Heuristic method Representation of TC in the .
ATM method of TSP based on form of abstract syntactic Detection of up to 0.82
. software defects when
[11] evolutionary trees, search based on TC

search

similarity.

executing 50 % of TS.

GA-based Test
Suite
Minimization
(TSM) [12]

Minimization of
TS based on a
genetic algorithm

An analysis of the
configuration of vehicle
parameters based on a genetic
algorithm was conducted.

The possibility of finding a
balance between maintaining
coverage and reducing the
execution time of the TS has
been demonstrated.

Metaheuristic
Fault Detection
[13]

Metaheuristics for
detecting software
defects.

An analysis was conducted on
particle swarm optimization,
ant colony optimization,
cuckoo search, firefly
algorithm, etc.

Ability to work effectively
without prior knowledge of
software behavior. Low
reproducibility of results.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Continuation of the Table 1

reinforcement
learning and a
genetic algorithm.

Research Method class Research features Research results
EA-based Evolutionar An analysis of the effectiveness | Effective allocation of time
e y of the method was performed | for testing software modules,
prioritization method of ith an i i the vol hich i h
[14] prioritizing TC with an increase in the volume ~ which increases the
' of input data in large projects. | efficiency of software testing.
RL+GA A hybrid method | The possibility of using genetic Acceleration of policy
Hybrid [15] based on algorithms to configure the convergence when training

input parameters of a Q-
learning agent was
investigated.

an agent on pre-configured
input data based on a genetic
algorithm.

General Monte

Monte Carlo Tree

An analysis of the applicability

The method is highly

fuzzing [17]

based on Monte
Carlo Tree Search
method

Carlo Tree Search of the Monte Carlo method for effective, but special
Search various classes of problems, improvements are needed for
(MCTS) study including modifications of the | different classes of problems.
[16] method and hybrid
configurations, was conducted.
Monte Carlo Prioritization of Testing model as a decision- The results prove the
Tree Search input data for making process. Investigation effectiveness of the method
input training deep of large input data search and show an increase of up to
parameters neural networks spaces for TC. + 30 % in code coverage

compared to basic methods.

Monte Carlo | Monte Carlo Tree | A classical algorithm based on | A fundamental algorithm that
Tree Search + Search method the Upper Confidence Bound laid the foundation for
UCT [18] with upper (UCB) is proposed. A classical modern methods based on
confidence bound combination of the MCTS Monte Carlo Tree Search.
method with the UCB
algorithm is proposed.
Greedy TSM | Greedy method of | Research on minimization of The results obtained prove
[19] TS minimization | TS based on a greedy algorithm the possibility of
depending on the size of input | compressing TS to 50-75 %
TS and test requirements. of the original size while
maintaining coverage.
Greedy TSM | Greedy method of Proposed two-criteria The effectiveness of the
[20] TSM optimization of TS based on a algorithm has been proven.
greedy algorithm. The results obtained indicate
a significant compression of
TS while maintaining test
requirements.
Greedy TSM | Greedy method of | Analysis of the effectiveness of | The possibility of compressing
[21] TSM the method based on mutation | TS by an average of 70 % with
testing. high software defect
detection capability has been
proven.
Greedy TSP | Greedy method of | Analysis of the application of | The results show a significant
[22] prioritizing TS the greedy method for reduction in TS while

prioritizing TS in regression
testing.

maintaining the ability to
detect software defects.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Continuation of the Table 1

Research Method class Research features Research results
Delta Delta debugging A classic delta debugging Significant reduction of input
Debugging method for algorithm, ddmin, is proposed. | data without losing the ability
TSM [23] minimizing TS. to reproduce defects.
Delta Delta debugging Application of DD for Significant reduction in input
Debugging for method for localization of test cases data without losing the ability
Fault software defect leading to reproduction of to reproduce defects.
Localization localization. specified software defects.
[24]
Hierarchical Hierarchical Hierarchical version of DD for Reduction of the time
Delta modification of structured scenarios. required to perform TS
Debugging the delta minimization while
[25] debugging maintaining the effectiveness
method for of reduced test cases.
minimizing TS.

Probabilistic Stochastic A proposed probabilistic model The method considers the
Delta modification of based on the delta debugging syntactic relationships
Debugging the delta algorithm and the between elements and the

[26] debugging representation of code as an results of previous tests,
method for TS abstract syntax tree. which makes it possible to
minimization. reduce the average

processing time by almost
27 % and reduce the size of
the TS by 3.4 times
compared to existing
methods.

To evaluate the effectiveness of the proposed method of TC forming based on a Q-learning
agent, it is advisable to use those basic methods that:
— do not require large training data sets or pre-trained models describing the expected
behavior of the software;
— can be applied to optimize TC for testing C++ libraries.
Greedy TC optimization algorithms remain the most effective and stable for minimizing TS.
Studies [19-22] show that TS minimization methods based on greedy algorithms provide
a significant reduction in TS size (up to 50-75 %) while maintaining the ability to detect software
defects and preserving testing efficiency.
TC optimization methods based on the delta debugging algorithm (classical admin,

hierarchical

and probabilistic modifications) [23-26] have stable

results

in the task

of minimizing TC with an increase in the volume of input data. They ensure effective localization
of minimal test cases subset while maintaining the ability to reproduce software defects. However,
these methods only optimize the structure of existing test suite without forming new test cases at
the API call level.

Search methods on the Monte Carlo tree, including those based on the UCT
algorithm [17-19], combine research and the use of acquired knowledge, making them relevant
for the formation of TC in large action spaces.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

At the same time, the application of the Monte Carlo method of TC optimization for
C++ libraries requires adaptation: mechanisms are needed to verify the validity of the formed TC,
determine the rational depth of the search tree, and limit the input data space.

Other groups — evolutionary algorithms, metaheuristics, and hybrid methods [13-16] -
demonstrate high efficiency on large input data space but are not effective in the task
of optimizing TC for C++ libraries in the absence of a predefined software behavior model
(without formal specifications).

Therefore, for a comparative assessment of the effectiveness of the proposed method,
the following were selected:

— Greedy TC optimization algorithm;

- Delta debugging algorithm for TC minimization;

- Monte Carlo Tree Search method.

Thus, the choice of these methods as basic ones is justified from both a theoretical and
practical point of view.

Purpose and objectives

The purpose of the study is to evaluate the effectiveness of the method of forming TC for C++
libraries based on a Q-learning agent.

To achieve this goal, the following tasks are set in the study:

1. To improve the mathematical model of the Q-learning agent to increase the efficiency
of TC formation for C++ libraries in conditions of high sparsity of the state space of the
Q-learning agent.

2. To investigate the influence of the parameters of the improved Q-learning agent model
on the agent's behavior in such conditions.

3. To consider the possibility of minimizing the obtained TC using the proposed TC formation
method based on the delta-debugging algorithm for TS minimization.

4. To evaluate the effectiveness of the proposed method in a unified TC formation
environment, based on the original test suites of two open-source C++ libraries. Use the classic
greedy TC optimization algorithm, the delta debugging TC minimization algorithm, and the TC
optimization method based on Monte Carlo Tree Search as the main methods for comparison.

Main part

1. Classic Q-learning agent model

The task of forming TC for C++ libraries without API specifications can be formalized as a
Markov Decision Process (MDP) [27], where an agent builds a test case step by step, choosing the
next action from the permissible API space:

(SAP(sfs.a),R(s.a),7),
where S is the set of states corresponding to the state s;A is the set of permissible actions
in the state s; P (s' | s,a) is the probability function of transition to a new state after performing

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

the action a in the state s; R(s,a) is the reward function provided for performing an action

a inthe state s; y (0,1) is the discount factor.

A test case of length t € N, which is formed as follows:

TC'=a,,a,,...,a,, & € A, (1)
consists of a sequence of a C++ library API calls.

The classic Q-learning algorithm belongs to the class of reinforcement learning methods,
which allow the agent to sequentially improve its action selection policy based on experience
gained during an interaction with the environment. The agent's goal is to maximize the expected
total reward by approximating the optimal action utility function:

Q"(s:2) = maxE[37 'R (s,,2,)] (2)
where 7 is the action selection policy.

The formula considers the randomness of transitions between agent states by maximizing the
mathematical expectation of the discounted sum of rewards. During training, Q-values

are updated according to Bellman's rule:
Q(St,at) <« Q(St,at)+(x><[R(st,at)+yxmng(sM,a')—Q(st,at)J, (3)

where « € (0,1] is the learning rate multiplied by &' =[...] —the TDE (Temporal Difference Error,

TDE). The agent sequentially updates Q-values in the Q-table, learning to distinguish useful
actions (which increase the coverage or efficiency of the test case) from uninformative
or redundant ones.

The process of training an agent with reinforcement can be presented in the form
of a diagram shown in Fig. 1.

Update Append
the Q-Table Action
) Choose GetTC i Test
Q-Table an Action Agent Suffix Case
......................... > T T———
A
Get Reward or | Execute
Execution Error § TC
i Y
Environment

Fig. 1. Diagram of the reinforcement learning process for a Q -learning agent

The agent interacts with the environment sequentially, selecting actions based on the Q-table,
updating it based on the results of the test case execution and the rewards received. Each interaction
cycle includes selecting an action, forming a partial test case, executing the action in the environment,
receiving a reward or execution error, and updating the corresponding Q -values in the Q -table.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

The classic Q-learning agent model allows the agent to be gradually trained in effective TC
construction strategies. However, the application of the classic Q -learning agent model to solve
the TC forming (optimization) problem for C++ libraries has a number of limitations:

— explosion of the state space dimension. The space of all possible API call sequences grows
exponentially depending on the complexity of the C++ library being tested. This approach leads
to high sparsity of the agent's state space in the Q -table — a large number of states occur rarely or
not at all, which complicates the generalization of the agent experience;

— lack of generalization between similar states. Classical Q-learning stores Q-values for

each specific state and does not take into account the structural similarity between agent states that
have common call suffixes. This approach can reduce the stability and speed of learning.

2. Improving the classic Q -learning agent model

The shortcomings of the classical Q-learning agent model, such as the explosion of the state
space dimension and the lack of generalization between similar agent states, are eliminated by
introducing an improved agent model based on a mixed Q-value estimation. To reduce
computational complexity, the state s, is restricted by introducing a test case suffix function.

Thus, let there be a current sequence of API calls of the tested library at step t that corresponds
to a partially formed test case (1), and let k € N be the length of the call history.

Then, in the previous model [1], the agent's state can be determined based on the last k actions
using the test case suffix function as follows:

, ift=0
S <—14,,...,8, if 0<t<k (4)
A -y Ift>Kk

Unlike the classic single-layer Q-table, in which each state is stored separately, the proposed
model uses a multi-layer structure with hierarchical merging of test case suffixes. Each partially
formed test case TC' has a set of suffixes calculated according to (4), which can be represented as
follows:

Ssuf ={Sti ||=1!’k} (5)
This approach allows us to interpret the Q-table as a multilayer table:
Q(s.a)= {Q(s,a)(o) Q(s.a)? ,...,Q(s,a)(k)} : (6)

(k

where Q(s, a)(o) is the evaluation for the initial state of the agent, Q(s,a) ! is the evaluation for

the suffix of the test case of depth k .

The concept of the spatial influence of TC suffixes is based on the theory of sequence
generalization in reinforcement learning [28].

When updating Q-values according to (3), the agent distributes the TDE not only to the current
state, but also to all its suffixes. Updates for each suffix depth level i =1,..,k are performed with

an exponential decrease in weight:

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Q(sia)« Q(s!,a)+ax A" x5, (7)
where 1 e (0,1) is the decay coefficient of shorter TC suffixes influence.

The proposed rule for updating a multilayer Q-table is based on the classical principles of
reinforcement learning described in [29], which assume exponential decay of the influence
of past states on the parameter. The use of A discounting in the structural dimension of shorter TC
suffixes, as opposed to time discounting of rewards (eligibility traces), is based on the concept of
state aggregation [30], which allows generalizing Q-values for similar states.

When selecting an action a € A , the Q-value estimate for available actions is calculated as
the weighted average of Q-values calculated for all suffixes of the current state:

k (i)
Q~(s,a)=z‘ﬂwi Qa)l (8)
P
W, is the weight coefficient of the suffix i, which is determined by the following formula:

w, = (N, +&) x 2, ©)
where N, is the number of updates of the Q-table for the suffix i, & is a small stabilizing term,
and g e (0,1] is the experience amplification coefficient.

Thus, formula (8) describes the mechanism of generalizing Q-values in the proposed
multilayer Q-table. The weights w, combine the frequency of Q-table visits for TC suffixes and

exponential decay, which reduces the influence of shorter TC suffixes. This approach allows the
agent to use information from previous states.

Procedure 1 for multi-layer generalization of Q-values based on current state suffixes is shown
in Fig. 2.

Procedure 1. Multi-layer generalization of Q-values based on current state suffixes (BlendQ-Table)

Input data: 5. local s < Equation _4(TC,i)
— Q -Q-table 6.if Q(s/,a)!=0 then

— A -—set of available actions 7. local N, <—CountUpdates(Q,sf)
— s, —current state of the agent

6\7 Sk
— 1 —decay coefficient of shorter suffix influence | 8- 1ocal W (N +10°)"2

— B —experience amplification coefficient 9. w, (a) «w, (a)+w-Q(s!,a)
10. w,,, (a) < w,,, (a)+w
Output data: 11. end if
— Q - table of weighted average Q-values 12. end for
13.if w,,, (a)>0 then
Procedure body: 14. Q(a) «w, (a)/w, (a)

1. if A =2 then return None 15. else

2. |0ca| WSum <_®,Wa (—@, Q~ (-@ 16 Q~(a)<_10—6
3.foreachacA do 17' end if
4.fori=11to Len(s,) do 18. end for

5. local s « Equation _4(TC,i) 19. return Q

Fig. 2. Pseudocode of the procedure for multi-layer generalization of Q-values based on suffixes
of the current state

Weighted averaging by Q-table visit frequency comes from [31, 32], which considers the role
of visit frequency in stabilizing Q-values and preventing overestimation.

During training, the agent applies an e-greedy policy in which actions are selected based on
multi-layer averaging of Q-values calculated for all suffixes of the current state according to

equation (8). The probability of selecting an action a, € A(s,) in state s, is defined as:

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

arg max Q(s,,a’ _
a, =1 @A) (5), (1 g), (10)
rand A (s,) &

where ¢ € (0,1) is the coefficient of stochasticity of the action space exploration.

Thus, formulas (8), (9), and (10) describe the modified &-greedy policy of the agent,
in which the choice of action is made based on the averaged Q-values for all state suffixes.
This policy combines the simplicity of classical Q-learning with the generalization of a multi-layer
Q-table, increasing the stability of learning and the accuracy of test case construction.

Algorithm 1 for agent training based on Q-learning is shown in Fig. 3, in which, unlike the
classical version, the TDE is distributed among all suffixes of the current state.

Algorithm 1. Agent training algorithm with multi-layer Q-table update
Input data: 4. local C,,, < GetCoverage(TC,)
- Q- |n|t|.aI_Q—tabIe 5.local C, « &
— TC, —original test case 6. local a,, < Linear Decay (N, .ep, a,, oy,)
— keN,k>0 - call history length ,

i ; 7. local e, « LlnearDecay(Nep,ep, go,gﬁnal)
- a, €(0,1] - initial learning rate P

. . 8.local R, <0, Loss«0, s, « J,a « &

— g €(01] —final learning rate]

_ . . 9. while C, <C,,, and not Over(A,,) do
- & <(0,1) —initial exploration probability P

. - . N 10. local N, <0
~ &pa €(0,1) = final probability of investigation e
~ y<(01) - discount factor 11. Iocf';ll Q < BlendQTable(Q,s,, A,,, 4,)
- N, € N —number of learning episodes 12. while Niory <Ny, dO
— N, €N —maximum number of retries 13. a, « Equation _10(Q.5,A,, ¢,)
— A —decay coefficient of shorter suffixes 14. TC «TC # &
influence o N 15. if isvalid (TC) then
— B —experience amplification coefficient 16. A, < A, /a,
Initial data: 1; blreak
— Q —trained Q-table. - €lse
19. TC « TC/a,

Algorithm body: 20. Ny < Ny +1
l.forep=1toN, do 21. end if
2. local TC « @ 22. end while
3. local A,, « GetActionSpace (TC,) 23.1f Ny > Npgiee then

Fig. 3. Pseudocode of the agent learning algorithm based on Q-learning with multi-layer Q-table update
(Beginning)

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Algorithm 1. Agent training algorithm with multi-layer Q-table update

24. break 33. Ry < Ry +1;
25. end if
34. Loss < Loss+L (Q,r,,a,S,,S.;,
26. s,,, « Equation _4(TC k) S 1)
35. 5, <S4
27. local r, « Execute(TC)
. 36. C, < GetCoverage(TC)
28. local 6' «—r, +yxmaxQ(s,;,a")-Q(s,.a,))
29.for i=1to k do 2; end while
30. s; « Equation _4(TC,i) - Log(L0ss, Ry)
i i . 39. end for
31. sha)eQ(sa)+axAt x5t
Qfsla) < Q(sa) 40. return Q
32. end for

Fig. 3. Pseudocode of the agent learning algorithm based on Q-learning with multi-layer Q-table update
(The end)

Rule (7) is used to update the Q-table, and policy (10) is used to select actions. During
learning, the learning rate and exploration probability change according to a linear decay law,
which ensures a balance between exploration and exploitation of actions.

The proposed Procedure 1 implements a mechanism of multi-layer generalization

of Q-values for a set of available actions. For each suffix of the current state s, a weight coefficient

w; is calculated, which takes into account the frequency of Q-table updates
and the distance to the current state according to (9).

The averaged estimates for each action Q(a) are formed as a normalized weighted average

of Q-values across all suffixes. The resulting table is used by the agent to make decisions
during training or TC forming according to ¢ -greedy policy.

Thus, the proposed model provides a hierarchical generalization of the Q-table,
allowing the agent to use the knowledge acquired in previous states during forming
new sequences of actions. Such a multilayered representation of states increases resistance
to high sparsity of the agent's state space and improves the agent's adaptation to heterogeneous
API environments.After the training stage, the agent uses the obtained Q-table to form new TC.
The pseudocode of Algorithm 2 for forming TC is shown in Fig. 4.

Unlike the learning process, which uses an ¢ -greedy policy, at the TC formation stage, actions
are selected using a softmax policy, which provides a smoother balance between exploration and
exploitation of already accumulated knowledge.

The probability of choosing an action a, € A(st) in state s, can be determined as follows:
Q(S,,a,)
e/
Q(st,a’) '
St
a'eA(s,)

where 7 is a temperature parameter that regulates the influence of stochasticity.
In Algorithm 2, the agent sequentially builds a new TC using the trained Q-table. At each
iteration, it forms the current state based on the latest calls, performs multi-layer generalization of

(11)

P(as,) =

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Q-values according to Procedure 1, and then selects the next action according to policy (11).
To ensure the correctness of the formed test case, a mechanism for rolling back actions and
checking the admissibility of transitions is provided.

The algorithm ends when the reference coverage is reached or the action space is exhausted.

Algorithm 2. Algorithm for forming a test case
Input data: 10. local Q < BlendQTable(Q,s,,A, 4, A)
- Q -Q-table 11. while N, <N, do
— TC, - original test case 12. & « Equation_ll(Q,st,A,z')
N i € N —max. number of retries
. . 13. TC«TC # 3
— 1 —temperature for softmax action selection 14 if isvalid (TC) then
— A —decay coeff of shorter suffix influence -1 isvalid (TC)
— B —experience amplification coefficient 15 A <Ala,
— & —coverage stability tolerance. %g glrseeak
Initial data: 18.TCTC/a,
— TC - formed test case 19. Ny ¢ Ny +1
20. endif
Algorithm body: 21. end while
;. k TC < @ 22' if Nretry > Nretries then
: Extract
« Bxract(Q) 23. break
3. C, <—GetC-overage(TC0) 24. endif
4. A « GetActionSpace (TC,) 25. C, < GetCoverage (TC)
> €0 _ 26.if C, >C,, +5 then
6. while C, <C,;, and not isOver(A) do
7. local N 0 21. break
- oy < 28. endif
8. local s, < Equation _4(TC,k) 29. end while
9.local a «<-0 30. return TC

Fig. 4. Pseudocode of the test scenario formation algorithm

Thus, within the scope of the study, model [1] has been extended to improve the stability
of learning and generalization of the action selection policy.

The main changes include the following:

— multi-layer updating of the Q-table: in the proposed version, the agent distributes the
temporal difference error among all suffixes of the current state, rather than just for one suffix
of length k, which allows the context of previous partial test case to be taken into account and
ensures better policy generalization;

— averaging of Q-values: for each state, a weighted generalization of estimates for all suffixes
is performed using weight coefficients defined in (9);

— action selection policy: during training, an e-greedy policy is used, taking into account the
averaged Q-values, and during the TC formation the softmax policy is used (11).

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

3. Evaluation of the effectiveness of TC optimization algorithms and methods

The following three basic metrics are used to evaluate the effectiveness of TC optimization
algorithms and methods [3]:

1. Retention of Coverage (RC) coefficient — evaluates the increase in original TS branch
coverage, reflecting the loss or retention of testing efficiency:

_ Cov(TS,,)
RC = %OVCFSMQ) : (12)
where Cov(TS,,) isthe TS coverage after optimization, Cov(TS, ;) is the coverage of the original

TS;
2. Compression Ratio (CR) — evaluates the reduction in the number of test case instructions:

Len (TSOrig) —Len(TS,,)
R= (%n (TSow)’)

where Len(TSmg) is the number of instructions in the original TS, Len(TS,,) is the number of

instructions after optimization.
3. Execution Cost Reduction (ECR) — estimates the reduction in time required to execute the
test suite:

(T(Tsorig) =T (TS,))

R T(TS,0)’

(14)

where T (Tsorig) is the time required to execute the original TS, and T (TS,) is the time required

to execute the TS after optimization.

To evaluate the effectiveness of the proposed method, three basic classical methods of TC
optimization are used: Greedy Reduction (GR), Delta Debugging (DD), and Monte Carlo Tree
Search (MCTYS).

Greedy Reduction. The GR method forms a TC by sequentially selecting actions that provide

the greatest increase in branch coverage. At each iteration, an action is selected a” € A, which
maximizes the coverage difference:
a” =argmax(Cov(TC@a')- Cov(TC)). (15)

a'eA

Greedy optimization methods are widely used in TS minimization problems due to their
simplicity of implementation. However, they are prone to getting stuck in local optima and are
sensitive to the initial order of actions [21].

Delta debugging. The DD method is based on iterative removal of actions from the TC to
eliminate redundancy without losing testing efficiency. At each step, the equivalence of the
specified criterion between the initial and reduced TC is checked. In particular, the execution error
is preserved [33].

Search in the Monte Carlo tree. The MCTS method constructs a tree of possible test cases,
where nodes correspond to states and edges correspond to API actions.

Actions are selected based on the Upper Confidence Bound (UCB) criterion [18, 34]:

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

UCT(Vi):%Jer ";—N (16)

where w; is the total reward for node v;, n; is the number of visits to node v;, N is the number

of visits to the parent node, and ¢ > 0 is a parameter that controls the balance between exploitation
and exploration.

After selecting a branch, the TC simulation stage is performed, the reward for the achieved
coverage is evaluated, and the reward is redistributed according to the following formula:

n,«<n+1 w, <w, +r, (17)
where T; is the simulation reward.

MCTS effectively explores a large space of possible test cases and gradually refines the policy
of action selection, making it suitable for use as the main method of TC optimization.

Research results

1. Environment setup

To evaluate the effectiveness of the methods, two open-source C++ libraries were selected,
which differ in scale and structural complexity. The main characteristics are shown in Table 2.

The lizard utility was used to analyze the number of lines of code and cyclomatic complexity
of the target libraries. The following abbreviations are used in Table 2:

— API = number of public functions of the target C++ library;

— LoC — number of lines in the source code;

— TCN — number of test cases in the test suite;

— IC — total number of instructions in the test suite;

— BC - branch coverage of original test suite;

— Avg.CCN - average cyclomatic complexity of the library functions.

Table 2. Characteristics of C++ libraries selected for research

Library APl | Loc | TcN | IC | BC,% | Avg. CcCN
Bitmap 33 760 7 71 27 25
PlusPlus

Hjson 122 | 3936 | 57 | 1259 | 361 5.4

The evaluation was performed on a workstation with an Intel Core i7 processor (6 cores,
2.6 GHz) and 16 GB of RAM.

The libraries and their test suites were compiled using AppleClang 15.0.0 (LLVM 15)
with coverage profiling options (-fprofile-instr-generate fcoverage-mapping) enabled.
The llvm-profdata and llvm-cov utilities were used to collect and analyze branch coverage.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

The parameters for training the Q-learning agent are consistent with the previous
implementation described in [1] and ensure stable convergence of the utility function in conditions
of high dimensionality of the action space. Table 3 lists the configuration parameters used for all
experiments, unless otherwise specified.

Table 3. Configuration of the Q-learning agent training according to Algorithm 1

Parameter name Designation | Value
Number of episodes N, 1000
Maximum number of retries N reties 30
Initial probability of investigation & 1
Final probability of investigation € final
Initial learning rate a, 0.3
Final learning rate fina) 0.1
Discount factor 4 0.85
Experience amplification factor B 1

2. Analysis of the impact of parameters of the improved Q-learning agent model

The parameter k determines the length of the call history used in forming the agent's state.
To study its impact, modeling was performed on the Hjson and BitmapPlusPlus libraries, where
the relative frequency of state-action pairs occurrences in the Q-table during training in
dependence to test case suffix length was analyzed.

Fig. 5, a shows the dependence of the relative frequency of finding records (suffixes) in the
Q-table on the parameter k for the BitmapPlusPlus library.

It can be observed that as k increases, the number of records found in the Q-table decreases,
which indicates an increase in the sparsity of the agent's state space. For k > 4, most suffixes occur
rarely, which leads to a deterioration in policy generalization.

Fig. 5, b shows a similar dependence for the Hjson library, which is characterized by a more
branched API call structure. Up to k < 3, the proportion of states found remains virtually constant.
Starting from k =4, there is a sharp drop in relative frequency, and for k > 6, most suffixes occur
very rarely, indicating a loss of the agent's generalization ability, which begins to accumulate
unique but uninformative states.

Thus, the optimal choice is the value of the suffix k =5, which provides a compromise
between context depth and stability of Q-value updates.

To assess the impact of the parameter A on learning efficiency, we chose the indicator
of the proportion of suffixes found, i.e., the fraction of the discovered state-action pairs in the
Q-table, e.g. the states that the agent has already encountered in previous learning episodes to the
total number of transitions between the agent's states during training.

This indicator allows us to quantitatively assess the agent's ability to reuse experience when
making decisions.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

o
N
[0

|
H
i
1
1
1
)
[}
|
®
1
]
i
|
i
|
i
1
*—
h
/
4
=
[¥]
o
L
]
1
1
I
]
.
]
]
1
1
]
I
I
r
i

o
]
1=}
I

o

N

n]
e
H
w

o

iz

o

—ar

-
L
.

o
=
o

o
(=1
]

=]
Relative frequency of state-action

Relative frequency of state-action
pair occurrences in the Q-table, a.u
pair occurrences in the Q-table, a.u.

-

e
o
[=]
]

|

]

]

]
L]

0 1 2 3 a 5 0 1 2 3 4
TC Suffix length k TC Suffix length k

a) b)

Fig. 5. Relative frequency of state-action pairs occurrences in the Q-table during training
of the Q-learning agent on the Hjson (b) and BitmapPlusPlus (a) libraries

Figure 6, a shows the results for the BitmapPlusPlus library. As A increases, the proportion
of suffixes found initially increases, reaching a maximum at 4 =0,7, indicating the most efficient

reuse of experience. A further increase in A causes a decrease in the indicator, as the agent begins

to rely too much on the experience of shorter suffixes, reducing the number of transitions learned.
A similar trend is observed for the Hjson library (Fig. 6, b). An increase in the proportion

of suffixes found to A<0,7 indicates a gradual increase in policy stability and improved

consistency of Q-table updates. At 4 =0,9, the indicator decreases slightly.

0.790
l 0.730

L\
0.785 N

o
~
[
w

0.780 .o

0.775

0y
~

— .

0.770 el kY
-

y
07654 . 7 A

entries in the Q-table, a.u.
(=] (=]
~ ~
')
v (=]

0.760

0.710
0.755 1 1

Fraction of discovered state-action
entries in the Q-table, a.u.
Fraction of discovered state-action

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Decay coefficient of shorter Decay coefficient of shorter
TC suffix influence A TC suffix influence A

a) b)

Fig. 6. Dependence of the average fraction of discovered state-action entries int the Q-table
on the coefficient 2 during training on the Hjson (b) and BitmapPlusPlus (a) libraries

Thus, a comparative analysis of the two C++ libraries indicates that excessively low values of
A lead to a loss of generalization, while excessively high values lead to a decrease in the use of
knowledge from the Q-table. The optimal choice is a decay coefficient for shorter suffixes
of TC equal to 4 =0,7. This value provides the best compromise between exploiting previous

experience and exploring new states, which confirms the stability of the policy for different types
of C++ libraries.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

3. Evaluation of the effectiveness of the TC formation method for
C++ libraries based on a Q-learning agent

For comparative analysis, three basic methods and two groups of configurations of the
proposed method were used:

— configuration of the classic greedy algorithm for TC formation (GR);

— configuration of the classic delta debugging algorithm for TS minimization (DSL);

— configurations for forming TC using the Monte Carlo tree search method (MCTS1,
MCTS2, MCTS3);

— configurations of the TC formation method based on a Q-learning agent (QLB-ML1,
QLB-M2, QLB-M3);

— configurations of the TC formation method based on a Q-learning agent and a post-
processing filter based on the delta debugging algorithm for TS minimization (QLB-MD1,
QLB-MD2, QLB-MD3).

For each algorithm configuration, 100 independent mathematical simulations were performed
on each target library. The configuration parameters are shown in Tables 4 and 5.

Table 4. Configurations for TC formation by a Q-learning agent according to Algorithm 2

Configuration Temperature, Coefficient, Coefficient,
T A B
QLB-M1 15 0.7 1
QLB-M2 3 0.7 1
QLB-M3 5 0.7 1

In the current implementation, the experience amplification factor g is fixed at 1, which
corresponds to linear consideration of the update frequency without additional experience
amplification.

Thus, the weights of suffixes are determined only by their visit frequency and exponential
decay based on the A parameter.

Table 5. Configurations for forming TC using the Monte Carlo Tree Search method

Configuration Coeff,, ¢ I_Iumb_er of
iterations
MCTS1 0.7 200
MCTS2 1.4 200
MCTS3 2.0 200

The distribution of branch coverage metrics for the BitmapPlusPlus library (Fig. 7, a) shows
that the classical DSL and GR methods consistently maintain the initial coverage level
corresponding to the original TS.

The MCTS method demonstrates a moderate increase in average coverage.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

However, it is characterized by limited variability of results due to the stochastic, but not
learning, nature of the search.

The proposed QLB-M and QLB-MD configurations provide a significant improvement in
performance, with median coverage values exceeding 32 %. This improvement is explained by the
ability of the Q-learning agent to generalize the experience of previous episodes,
and the subsequent application of delta debugging allows to maintain and increase coverage
after reducing the TC.

A similar trend is observed for the Hjson library (Fig. 7, b). The classical DSL and
GR methods hardly change the initial coverage level (36.1 %), while MCTS provides a non-stable
increase to 37 %.

In contrast, the proposed QLB-M and QLB-MD configurations demonstrate a systematic
increase in both the median and upper quartiles of the distribution, reaching a peak
value of 37.5 %.

Thus, the agent is capable of effectively reproducing complex combinations of API calls in
libraries with deep structural dependencies.

40.0 38.0 1

== Original TS == Original TS
375 = 05t i * 3751 = 05l
=3 GR . L] 3 GR
[l MCTS B MCTS
. [QLB-M R I QLB-M
[QLB-MD T y [QLB-MD %

w
(%
o
w
~
o

w
~
w
w
(=]
wn

I

! ° ° I

¥}
™
[
w
[
wn

Branch Coverage, %
w
o
[=]

Branch Coverage, %
w
[=)]
o

]
o
o
w
o
o

225 o

w
>
w

o
=3
o

w

Py

o

»%xmaxﬂ,sxms N N e
OO CLaR UL SR L\ \" WG\ L] O EA O LR LR CER LS LIS SO\ L\ L
ORI AN &\“Q&\‘\O@@ MO R T S »%\!\Q&\h i By
Configuration Configuration
a) b)

Fig. 7. Distribution of branch coverage metrics depending on the configuration of the TC optimization
method for the BitmapPlusPlus (a) and Hjson (b) libraries, where: the dotted line indicates
the coverage level of the original TS

Fig. 8 shows the results of comparing the dynamics of branch coverage growth during the
execution of TC formed using different optimization methods.

The curves obtained reflect the relationship between the number of instructions executed and
the achieved level of branch coverage of the code.

The dotted horizontal line indicates the coverage level of the original TS, and its intersection
with the curve of a specific method corresponds to the number of instructions for which adequate
compression ratio is maintained without loss of code coverage.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

40

351 /
£ 30 /
o .
o | / /
© 25 / /
— /
()
3 20
@]
e
g 15
% —— QOriginal TS
@ 10 e
—— MCTS2
51 —— QLB-M2
~—~— QLB-MD2
0 - - - - - - ‘ ‘
0 5 10 15 20 25 30 35 40
Number of executed TC instructions
a)
Fig.

Branch Coverage, %

204

15 A

=
o
s

w
1

—— QOriginal TS
—— DSL

—— GR

—— MCTS2
—— QLB-M2
—— QLB-MD2

100 200 300 400 500

Number of executed TC instructions

b)

8. Dependence of branch coverage on the number of executed TC instructions for different TC

optimization methods for BitmapPlusPlus (a) and Hjson (b) libraries

Fig. 9 shows the dependence of the compression ratio on the configuration of TC optimization
methods for the BitmapPlusPlus and Hjson libraries.

Compression Ratio, a. u.
s o o o o

e
—

=
(=]

o (,V“ o (gl) W0
A oo c\age. 0\55 0¥ 4o

OF ot 49°
SRSRS

Configuration
a)

Compression Ratio, a. u.

<
=
N

o
o

<
~

oo GQ‘ O‘:X C(‘;L 663

3 Wk
\"\7\%

g W @\0‘\ ‘,‘01 v\o'ﬁ

o ¥ ¥
Configuration

b)

Fig. 9. Compression ratio depending on the configuration of optimization methods for the
BitmapPlusPlus (a) and Hjson (b) libraries, where: the red segments

on the columns indicate the standard error

For the BitmapPlusPlus library (Fig. 9, a), there is a gradual increase in the compression ratio
from classical methods (DSL, GR) to the proposed configurations (QLB-M, QLB-MD).

The DSL and GR methods show average values of 0.5-0.6, which corresponds to the basic
level of reduction without taking into account the dependencies between API calls.

The MCTS method shows similar results (= 0.45), since stochastic TC formation does not

guarantee avoidance of redundant actions.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

The proposed QLB-M method improves this indicator to 0.55-0.6.

The highest results are achieved in QLB-MD configurations, where the delta debugging
algorithm is applied as a post-processing filter after the Q-learning agent formation stage.
This approach enables the median compression ratio values exceed 0.8, which indicates
a significant reduction of TC without loss of coverage.

For the Hjson library (Fig. 9, b), the indicators turned out to be more variable due to the more
complex structure of API calls and the greater depth of the call tree.

The basic DSL method shows the highest compression ratio (~ 0.83), while GR is significantly
lower (~ 0.6) due to the lack of consideration of dependencies between actions.

Stochastic MCTS configurations remain within the range of 0.48-0.5, reflecting low reduction
efficiency without explicit coverage analysis.

QLB-M configurations show a steady increase in compression ratio (= 0.7-0.75), while QLB-
MD combinations show the highest results (0.82-0.86) with low variance, indicating the stability
of the effect after training.

Fig. 10 shows the results of evaluating the average execution time of TS for the
BitmapPlusPlus and Hjson libraries.

©
S

!
|

~
o
\

—+ Original TS
Il DSL

[GR

Bl MCTS
8 QLB-M
=3 QLB-MD

=+ Qriginal TS
. DSL

= GR

[MCTS
[QLB-M
=3 QLB-MD

~
o
L

D

o
D
o

wu
=]
L
w1
o
L

S
o
s
o
|

w
o
L
w
o

N
o
'
N
o
\

=
o
)

._.
o
Average TS execution time, ms

Average TS execution time, ms

o
I

o
|

o o CLE P CC RN A SN N C R o LR (IR o) o o L UG TN A R RN C IR o L o LI o
o @C‘ ‘JA\C\ \kd 0\’6 Q\’% 0\& O\ﬁr\hq\’%.‘h 0\’6.\“ 0 \“C‘ ‘hd ‘[\C‘ 0\}6 0\9 0\'6 0\’%-\!\0\’%_\“ Q\’e,\r‘
Configuration Configuration

a) b)

Fig. 10. Average TS execution time depending on the configuration of TC optimization methods for the
BitmapPlusPlus (a) and Hjson (b) libraries, where: the red segments on the columns represent the
standard error, and the dotted line corresponds to the execution time of the original TS

For the BitmapPlusPlus library (Fig. 10, a), there is a clear decrease in execution time from
classical methods (DSL and GR) to the proposed ones (QLB-M and QLB-MD).

The basic configurations show the biggest average time (55-60 ms).

The MCTS configurations show a reduction in time to 40-42 ms. However, they do not
achieve significant improvements due to the lack of generalized experience.

The QLB-M method provides a further reduction in average time to 20-35 ms due to the
ability of the Q-learning agent to build shorter and more focused sequences of actions.

QLB-MD configurations show the highest efficiency, where the combination of learning and

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

delta debugging reduces the average execution time to 12-30 ms. That is, almost three times less
than the basic methods.

For the Hjson library (Fig. 10, b), the trend generally remains the same. However, the
difference between configurations is less pronounced due to the greater depth of calls and
structural complexity of the library.

The DSL method provides the lowest time among the classic basics (~ 30 ms), while GR
shows higher values (~ 50 ms), which indicates its low stability when working with more complex
C++ libraries.

The MCTS method maintains a time of 45-53 ms with little variation, while QLB-M gradually
reduces it to 40-45 ms.

The QLB-MD configuration group provides the lowest results (18—-25 ms) while maintaining
a high level of coverage and compression ratio, indicating effective coordination of TC
optimization processes and reduction of redundant calls in a complex environment.

To evaluate the effectiveness of the methods under study, a comparative analysis
of the average TS formation time was performed (Fig. 11).

1e9

N DSL
£ GR
B MCTS
= QLB-M
= QLB-MD

H

Average TS formation time, ms
Average TS formation time, ms

DSL GR MCTS2 QLB-M2 QLB-MD2 DSL GR MCTS2 QLB-M2 QLB-MD2

Configuration Configuration
a) b)

Fig. 11. Average TS formation time for TC optimization methods for BitmapPlusPlus (a)
and Hjson (b) libraries

The graphs show that the basic DSL and MCTS2 methods have the highest time costs, while
GR shows the fastest formation due to simple heuristics.

The improved QLB-M2 and QLB-MD2 methods show a significant reduction in formation
time compared to the basic methods, while maintaining stability and moderate variability of
results.

Tables 6 and 7 show the summary results of the evaluation of the effectiveness of the
configurations of the studied methods for the C++ libraries BitmapPlusPlus and Hjson.

For the BitmapPlusPlus library (Table 6), the basic DSL and GR methods retain the original
coverage (RC = 1), but are characterized by a moderate level of compression (CR = 0.54-0.63)
and a low reduction in execution time (ECR = 0.15-0.20).

MCTS search variants increase coverage by =~ 9 % (to RC = 1.09) and reduce execution time
by =~ 20 %. However, they do not provide a high value of compression ratio.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

The proposed QLB-M configurations provide a coverage gain of up to ~ 1.22, a compression
ratio of 0.55-0.61, and a reduction in ECR execution time of = 0.7-0.8.

The highest results were achieved for QLB-MD, where the combination of Q-learning with a
delta debugging algorithm filter enables for a ~ 22 % increase in branch coverage, compression
ratio of up to 0.8, and a 70-85 % reduction in ECR execution time.

Table 6. Evaluation of the effectiveness of the configurations of the studied methods
for the BitmapPlusPlus library

Configuration RC CR ECR
DSL 1 0.63 0.19+0.02
GR 1 0.54 0.15+0.03

MCTS1 1.091+£0.02 | 0.46+0.02 | 0.23+0.015
MCTS2 1.092+0.02 | 0.46+0.03 | 0.23+0.016
MCTS3 1.093+0.02 | 0.46+0.03 | 0.21 +0.015
QLB-M1 1116 +0.08 | 0.61+0.08 | 0.79 £0.07
QLB-MD1 1127 +0.08 | 0.81+0.02 | 0.85*0.04
QLB-M2 1.215+0.10 | 0.55+0.08 | 0.62+0.15
QLB-MD2 1.225+0.10 | 0.78+0.02 | 0.71+0.18
QLB-M3 1.153+0.09 | 0.57+0.07 | 0.72+0.13
QLB-MD3 1.163+0.09 | 0.78+0.02 | 0.78+0.12

For the Hjson library (Table 7), the results are similar, but with less pronounced differences
between methods due to the greater complexity of the internal structure of API calls.

Table 7. Evaluation of the effectiveness of the configurations of the studied methods
for the Hjson library

Configuration RC CR ECR
DSL 1.000 0.83 0.61 + 0.05
GR 0.982 0.6 0.23 £0.00

MCTS1 0.969 +0.03 | 0.51+0.01 0.39 £ 0.03
MCTS2 0.981+0.03 | 0.52+0.00 | 0.40+0.005
MCTS3 0.988 +0.03 | 0.48 +0.00 0.34 £ 0.07
QLB-M1 1.008 £0.01 | 0.74+0.02 0.41+0.11
QLB-MD1 1.012+0.01 | 0.82+0.09 0.70 £ 0.07
QLB-M2 1.002+0.01 | 0.73+0.03 0.40 £ 0.04
QLB-MD?2 1.008 £0.01 | 0.84+0.08 | 0.71+0.074
QLB-M3 0.996 +0.01 | 0.74 £0.02 0.42+0.11
QLB-MD3 1.000+£0.01 | 0.86+0.01 | 0.74 +£0.039

The main DSL method maintains full coverage (RC = 1) and provides a high compression
ratio (CR =0.83) at ECR = 0.61.

The GR method shows a decrease in coverage (RC = 0.98) and lower efficiency in reducing
execution time (ECR = 0.23).

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

MCTS search configurations achieve a moderate reduction in time (ECR ~ 0.34-0.40) with
stable but slightly lower coverage than the original TS.

QLB-M methods provide a balance between coverage (RC =~ 1.00-1.01), compression
ratio (0.73-0.74), and execution time reduction (ECR = 0.4).

QLB-MD configurations show the highest results: RC ~1.00-1.01, CR ~0.84-0.86,
ECR = 0.70-0.74, which confirms the stability and effectiveness of the proposed method in
conditions of deeper data structures in complex C++ libraries.

Thus, for both libraries, the QLB-MD configurations are the most effective, providing
a balanced increase in coverage (up to +22.5%), compression ratio (up to 0.86),
and a significant reduction in TS execution time.

To summarize the results of the comparison of methods, radial diagrams were
built (Fig. 12), which reflect the relationship between the three main coefficients of effectiveness
for the methods under study.

Compression Compression
Ratio 5 Ratio 100 DSL
DSL
(CR), % or (CR), % GR
100 MCTS2 80 MCTS2

QLB-m2
QLB-MD2

QLB-M2
QLB-MD2

80

Execution Retention of , .
Cost Coverage Execution Retention of
Reduction (RC), % Cost Coverage
(ECR), % Reduction (RC), %
(ECR), %
a) b)

Fig. 12. Radial diagrams of the effectiveness of methods for the BitmapPlusPlus (a)
and Hjson (b) libraries

Thus, the combination of the Q-learning mechanism with delta debugging action filtering
provides comprehensive optimization of the TC and increases the efficiency of the testing process
without losing coverage quality.

Conclusions

Thus, this article evaluates the effectiveness of the method of forming TC for C++ libraries
based on a Q-learning agent. The proposed method combines step-by-step formation of function
call sequences based on Q-learning with a post-processing filter based on the delta debugging
algorithm.

Unlike classical greedy and search-based optimization methods, the proposed agent
adaptively takes into account previous experience, balancing between exploring new states and
using already known trajectories, which increases the ability to generalize experience and the
stability of learning.

Analytical research of the parameters of the mathematical model indicates that the optimal
length of the call history k is 5, since with a deeper history there is a sharp decrease in the
frequency of finding states in the Q-table.

Research into the parameter of the mathematical model of the decay of shorter suffixes A
shows maximum efficiency at a value of 0.7, when the agent demonstrates the highest proportion
of use of accumulated experience, reflecting the system's ability to maintain a balance between
stability and flexibility of learning.

A comparative assessment of effectiveness with the main methods showed the advantage
of the developed method in all key testing effectiveness criteria, which have the following average
values: coverage retention coefficient up to 1.225, compression ratio up to 0.86,
and TS execution time reduction ratio up to 0.74.

The improved mathematical model provides generalization of the Q-learning agent’s
experience between similar TC and increases the efficiency of their formation in conditions
of high sparsity of the state space of the Q-learning agent. Unlike the classical mathematical model
of Q-learning, in which Q-values are updated only for the current state of the agent (test case
suffix), in the proposed model, the temporal difference error is distributed among all test case
suffixes with the decay of influence of the shorter suffixes. Thus, according to the results
of evaluating the effectiveness of the method of forming TC for C++ libraries based
on a Q-learning agent, its effectiveness in solving the problem of forming (optimization) of TC for
C++ libraries, which allows reducing the length of original TS without losing the branch coverage
of the C++ library code being tested and reducing its execution time.

Further research directions may include the formation of test cases for C++ libraries based on
a deep learning agent with reinforcement and the application of the proposed method
of forming (optimizing) test cases for software developed using other programming languages.

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

References

1. Semenov, S., Kolomiitsev, O., Hulevych, M., Mazurek, P., Chernyk, O. (2025), "An Intelligent Method for
C++ Test Case Synthesis Based on a Q-Learning Agent", Applied Sciences, Vol. 15(15),
Art. No. 8596. DOI:_https://doi.org/10.3390/app15158596

2. Alian, M., Suleiman, D., Shaout, A. (2016), "Test Case Reduction Techniques — Survey", International
Journal of Advanced Computer Science and Applications, Wol. 7(5), P. 264-275.
DOI:_https://doi.org/10.14569/IJACSA.2016.070537

3. Khan, S. U. R, Lee, S, Javaid, N., Abdul, W. (2018), "A Systematic Review on Test Suite Reduction:
Approaches, Experiment’s Quality Evaluation, and Guidelines", IEEE Access, Vol. 6, P. 11816-11841. DOI:
https://doi.org/10.1109/ACCESS.2018.2809600

4. Rahman, M., Zamli, K., Kader, M., Sidek, R., Din, F. (2024), "Comprehensive Review on the State-of-the-
arts and Solutions to the Test Redundancy Reduction Problem with Taxonomy", Journal of Advanced
Research in Applied Sciences and Engineering Technology, Wol. 35(1), P. 62-87.
DOI:_https://doi.org/10.37934/araset.34.3.6287

5. Marappan, R., Raja, S. (2025), "Recent Trends in Regression Testing: Modeling and Analyzing the
Critiques in Selection, Optimization, and Prioritization", National Academy Science Letters.
DOI:_https://doi.org/10.1007/s40009-025-01613-6

https://doi.org/10.3390/app15158596
https://doi.org/10.14569/IJACSA.2016.070537
https://doi.org/10.1109/ACCESS.2018.2809600
https://doi.org/10.1109/ACCESS.2018.2809600
https://doi.org/10.37934/araset.34.3.6287
https://doi.org/10.1007/s40009-025-01613-6

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Fontes, A., Gay, G. (2023), "The integration of machine learning into automated test generation:
A systematic mapping study", Software Testing, Verification and Reliability, Vol. 33(4), e1845.
DOI:_https://doi.org/10.1002/stvr.1845

Sebastian, A., Naseem, H., Catal, C. (2024), "Unsupervised Machine Learning Approaches for Test Suite
Reduction”, Applied Artificial Intelligence, Vol. 38(1), Art. No. 2322336.
DOI:_https://doi.org/10.1080/08839514.2024.2322336

Nayab, S., Wotawa, F. (2024), "Testing and Reinforcement Learning: A Structured Literature Review",
2024 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C),
Cambridge, United Kingdom, 2024, P. 326-335. DOI:_https://doi.org/10.1109/QRS-C63300.2024.00049
Coviello, C., Romano, S., Scanniello, G., Marchetto, A., Corazza, A., Antoniol, G. (2019), "Adequate vs.
inadequate test suite reduction approaches”, Information and Software Technology, Vol. 119,
Art. No. 106224. DOI:_https://doi.org/10.1016/j.infsof.2019.106224

Hulevych, M., Kolomiitsev, O. (2025), "Automated Test Generation Techniques for C++ Software",
Control, Navigation and Communication Systems, Vol. 2(80), P. 102-107.
DOI:_https://doi.org/10.26906/SUNZ.2025.2.102

Pan, R., Ghaleb, T. A, Briand, L. (2023), "ATM: Black-box Test Case Minimization Based on Test Code
Similarity and Evolutionary Search”, Proceedings of the 45th International Conference on Software
Engineering (ICSE ’23), Melbourne, Australia, 2023, pp. 1700-1711.
DOI:_https://doi.org/10.1109/ICSE48619.2023.00146

Koitz-Hristov, R., Sterner, T., Stracke, L., Wotawa, F. (2024), "On the suitability of checked coverage and
genetic parameter tuning in test suite reduction”, Journal of Software: Evolution and Process, Vol. 36(8),
€2656. DOI:_https://doi.org/10.1002/smr.2656

Dang, Z., Wang, H. (2024), "Leveraging meta-heuristic algorithms for effective software fault prediction:
A comprehensive study”, Journal of Engineering and Applied Science, Vol. 71, Art. No. 189.
DOI:_https://doi.org/10.1186/s44147-024-00529-0

Rheaf, T. S. (2025), "Prioritization of Modules to Reduce Software Testing Time and Costs Using
Evolutionary Algorithms and the KLOC Method", Journal of Education for Pure Science, Vol. 15(1).
P. 116-131. DOI: https://doi.org/10.32792/jeps.v15i1.658

Bai, R., Chen, R., Lei, X., Wu, K. (2024), "A Test Report Optimization Method Fusing Reinforcement
Learning and Genetic Algorithms™, Electronics, Vol. 13(21), Art. No. 4281.
DOI:_https://doi.org/10.3390/electronics13214281

Swiechowski, M., Godlewski, K., Sawicki, B., Mandziuk, J. (2023), "Monte Carlo Tree Search:
A review of recent modifications and applications”, Artificial Intelligence Review, Vol. 56, P. 2497-2562.
DOI:_https://doi.org/10.1007/s10462-022-10228-y

Ye, A., Wang, L., Zhao, L., Ke, J. (2022), "Ex2: Monte Carlo Tree Search-based test inputs prioritization
for fuzzing deep neural networks", International Journal of Intelligent Systems, Vol. 37(12), P. 11966—
11984. DOI: _https://doi.org/10.1002/int.23072

Kocsis, L.; Szepesvéri, C. (2006), "Bandit Based Monte-Carlo Planning", Lecture Notes in Computer
Science (ECML 2006), Vol. 4212, P. 282-293. DOI:_https://doi.org/10.1007/11871842 29

Lin, C.-T., Tang, K.-W., Wang, J.-S., Kapfhammer, G. M. (2017), "Empirically evaluating Greedy-based
test suite reduction methods at different levels of test suite complexity”, Science of Computer Programming,
Vol. 150, P. 1-25. DOI:_https://doi.org/10.1016/j.scic0.2017.05.004

Parsa, S.; Khalilian, A. (2009), "A Bi-objective Model Inspired Greedy Algorithm for Test Suite
Minimization", Lecture Notes in Computer Science (FGIT 2009) Vol. 5899, P. 208-215.
DOI: https://doi.org/10.1007/978-3-642-10509-8 24

Jehan, S., Wotawa, F. (2023), "An Empirical Study of Greedy Test Suite Minimization Techniques Using
Mutation Coverage", IEEE Access, Vol. 11, P. 65427-65442.
DOI:_https://doi.org/10.1109/ACCESS.2023.3289073

https://doi.org/10.1002/stvr.1845
https://doi.org/10.1080/08839514.2024.2322336
https://doi.org/10.1109/QRS-C63300.2024.00049
https://doi.org/10.1016/j.infsof.2019.106224
https://doi.org/10.26906/SUNZ.2025.2.102
https://doi.org/10.1109/ICSE48619.2023.00146
https://doi.org/10.1002/smr.2656
https://doi.org/10.1186/s44147-024-00529-0
https://doi.org/10.32792/jeps.v15i1.658
https://doi.org/10.3390/electronics13214281
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1002/int.23072
https://doi.org/10.1007/11871842_29
https://doi.org/10.1016/j.scico.2017.05.004
https://doi.org/10.1007/978-3-642-10509-8_24
https://doi.org/10.1109/ACCESS.2023.3289073

22. Putra, A. W., Legowo, N. (2025), "Greedy Algorithm Implementation for Test Case Prioritization in the
Regression Testing Phase", Journal of Computer Science, Vol. 21(2), P. 290-303.
DOI:_https://doi.org/10.3844/jcssp.2025.290.303

23. Zeller, A., Hildebrandt, R. (2002), "Simplifying and isolating failure-inducing input”, IEEE Transactions
on Software Engineering, Vol. 28(2), P. 183-200. DOI:_https://doi.org/10.1109/32.988498

24. Cleve, H., Zeller, A. (2005), "Locating causes of program failures™, Proceedings of the 27th International
Conference on Software Engineering (ICSE ’05), Association for Computing Machinery, New York, USA,
2005, P. 342-351. DOI:_https://doi.org/10.1145/1062455.1062522

25. Misherghi, G., Su, Z. (2006), "HDD: Hierarchical delta debugging", Proceedings of the 28th International
Conference on Software Engineering (ICSE ’06), Association for Computing Machinery, New York, USA,
2006, P. 142-151. DOI:_https://doi.org/10.1145/1134285.1134307

26. Wang, G., Wu, Y., Zhu, Q., Xiong, Y., Zhang, X., Zhang, L. (2023), "A Probabilistic Delta Debugging
Approach for Abstract Syntax Trees", 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE), Florence, Italy, 2023, pp. 763-773.

DOI: https://doi.org/10.1109/ISSRE59848.2023.00060

27. Puterman, M. L. (1994), "Markov Decision Processes: Discrete Stochastic Dynamic Programming”, John
Wiley & Sons. DOI: https://doi.org/10.1002/9780470316887

28. Singh, S. P. (1992), "Transfer of learning by composing solutions of elemental sequential tasks", Machine
Learning, Vol. 8, P. 323-339. DOI:_https://doi.org/10.1007/BF00992700

29. Sutton, R. S., Barto, A. G. (2018), "Reinforcement Learning: An Introduction”, (2nd ed.). MIT Press.

30. Li, L., Walsh, T. J., Littman, M. L. (2006), "Towards a Unified Theory of State Abstraction
for MDPs", Proceedings of the 9th International Symposium on Artificial Intelligence
and Mathematics, 2006.

31. Watkins, C.J.C.H., Dayan, P. (1992), "Q-learning”, Machine Learning, Vol. 8, P. 279-292.
DOI:_https://doi.org/10.1007/BF00992698

32. Hasselt, H. (2010), "Double Q-learning”, Advances in Neural Information Processing Systems
(NIPS 2010), Vol. 23.

33. Groce, A., Alipour, M. A, Zhang, C., Chen, Y., Regehr, J. (2016), "Cause reduction: Delta debugging, even
without bugs”, Software Testing, Verification and Reliability, VWol. 26, P. 40-68.
DOI:_https://doi.org/10.1002/stvr.1574

34. Auer, P., Cesa-Bianchi, N., Fischer, P. (2002), "Finite-time Analysis of the Multiarmed Bandit Problem",
Machine Learning, Vol. 47, P. 235-256. DOI:_https://doi.org/10.1023/A:1013689704352

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

Received (Haoituna) 13.11.2025
Accepted for publication (Ilpuiinama oo opyxy) 08.12.2025
Publication date (Jama nyéonixayii) 28.12.2025

About the Authors / Bioomocmi npo asmopie
Hulevych Mykhailo — National Technical University "Kharkiv Polytechnic Institute”, PhD Student,

Computer Engineering and Programming Department, Kharkiv, Ukraine;
e-mail: gulevich30misha@agmail.com; ORCID ID: https://orcid.org/0009-0003-8622-3271

I'yaesnu Muxaiiio BogoammupoBuu — HamionanpHWI TexHIYHWE YHiBepcHuTeT "XapKiBCHKHI
MONITeXHIYHUHA 1HCTUTYT", acmipaHT Kadeapuw KOMI'IOTEPHOI iHXKEHepii Ta MporpaMyBaHHS,
XapkiB, YkpaiHa.

https://doi.org/10.3844/jcssp.2025.290.303
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/1062455.1062522
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1109/ISSRE59848.2023.00060
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/BF00992700
https://doi.org/10.1007/BF00992698
https://doi.org/10.1002/stvr.1574
https://doi.org/10.1023/A:1013689704352
mailto:gulevich30misha@gmail.com
https://orcid.org/0009-0003-8622-3271

Aemomamu3zoeani cucmemu ynpasiinua ma npunaou asmomamuxu. 2025. Ne 4 (187)

OLITHIOBAHHSI EOEKTUBHOCTI METOJY ®OPMYBAHHSA
TECTOBUX CUEHAPIIB JUISI C++ BIBJIIOTEK
HA OCHOBI ATEHTA 3 Q-HABYAHHSM

OnTumizaniss TectoBux cueHapiiB (TC) € HEoOXiAHOW YMOBOIO MiABHIICHHA €(PEKTUBHOCTI PErpeciiHoro
tectyBaHHs C++ 0i0miotek. IIpeamerom nocaimkenHs € meroau ¢GopmyBaHHsA (onTuMizamii) TC mis
C++ 6i6mioTek. MeTa po60TH — OIliHUTH epeKTHBHICT MeToay popmyBanus TC mis C++ 610110TeK Ha OCHOBI
areHTa 3 QQ-HaBuaHHsSM. 3aBJaHHS JOCJHII:KeHHsI: YIOCKOHAJIUTH MaTeMaTHYHy MOJENh areHTa
3 Q-HaBuaHHAM s miaBuIIeHHS edektuBHOCTI GopmyBanHs TC miast C++ 6i0mioTek B yMOBax BHCOKOL
PO3PIKEHOCTI IPOCTOPY CTaHIB areHTa 3 Q-HaBUaHHAM; TOCTIANTH BIUIMB ApaMETPiB yIOCKOHAJIEHOT MOIei
areHta 3 (Q-HaBYaHHSIM Ha HOro MOBEAIHKY 3a TAKUMH YMOBaMH; PO3IJISIHYTH MOXJIMBICTH MiHiMizaii
ctopmoBanux TC meromom ix (OpMYBaHHS 3aBISKH AITOPUTMY JejibTa-aebarrinr miHimizamnii TC; omiHuTH
e(eKTUBHICTh 3aMpONOHOBAHOIO METOAY ¥ TMOpIBHATH 3 BigomMumu MeTogamu onrtumizamii TC.
Metoau pocaimkeHHs. Y po0OTi 3aCTOCOBaHO METOJA IMOMYKYy Ha jgepeBi Monte-Kapno, kimacuuny
MaTeMaTH4YHy Mojelb (Q-HaBYaHHS, alTOPUTM JeibTa-aedarrinr wmiHimizamii TC i xamiOHWN anropuT™
ontumizanii TC. EdekTuBHICTh 3alIponoHOBAaHOTO METOy OlLliHEHO Ha NBOoX C++ 0i0mioTekax 3 BIAKPUTHM
BUXIJHUM KOJOM 32 JOMOMOIOI0 CTaTUCTHYHOro aHamizy 100 MaTeMaTHYHHX MOJCNIOBAaHb KOHQIryparii
METOMIB, fKiI JOCHIIKYIOTbcsA. JIOCATHYTI pe3yJbTaTH: OLIHKA e(EKTUBHOCTI BKa3ye Ha Te, IO
3aMpOIMOHOBAHMI METOT 3a0e3Meuye Taki cepe/iHi 3HAYCHHS MOKa3HUKIB ehekTuBHOCTI ontuMizanii TC mis C++
0i0mioTeK: Koe(IIieHT 30epe)KEHHsI TTOKPUTTS CTAaHOBUTH A0 1.225, KOe(IIIEHT CTUCHEHHS TECTOBOTO HabOpy
(TH) — no 0.86 ii koedimieHT ckopodeHHs yacy Ha BukoHaHHs TH — o 0.74. Y cTaHOBIEHO, SKIIO MOPIBHIOBATH
3 xanionuMm anroputMoMm omrtuMizamii TC, aenmpra-fgebarriar anropurMoMm MiHimizamii TC Ta MeromoM
orntumizanii TC Ha ocHOBI momryky Ha nepeBi MonTe-Kapio, TO 3amporOHOBaHUII METOI Mae€ CyTTEBE
i ABUIIICHHS e(heKTUBHOCTI (opMyBaHHS (onTumi3ariii) TC Juis C++ 6i0mioTex.
BucHoBkH. Y0CcKOHalleHa MaTeMaTHYHA MOJIENb 3a0e3leuye y3aralbHEeHHS I0CBily areHTa 3 Q-HaBYaHHAM
Mk monioaumu TC 1 migBUIIye e(EKTHBHICTD iX (POPMyBaHHSI B YMOBaX BHCOKOI PO3PiIKEHOCTI MPOCTOPY
cTaHiB areHta 3 Q-HaBuaHHAM. OTke, 3a pe3yNbTaTaMH OMLIHIOBaHHA MeTony ¢opmysanHs TC mis
C++ 06i0mioTek Ha OCHOBI areHTa 3 (Q-HaBYaHHSM ITITBEP/HKEHO HOTO JOLIIBHICTE Y PO3B’s3aHHI 3a1adi
¢dopmyBanHs (omruMizanii) TC mast C++ 6i6mioTek, mo gae 3Mory ckopoTutd noxuHy TC 06e3 BTpatu
T'JIKOBOTO MOKPUTTA Koxy C++ Oi0mioTekH, sika TeCTYeThCs, 1 3SMEHIINTH yac Ha BukoHaHHS TH. ITomambmmi
nocmikeHHst OynyTh mpucesiueHi ¢opmyBanHio TC pmias C++ 0i0mioTek Ha OCHOBiI areHTa TIJIMOMHHOTO
HAaBUYAHHSA 3 MIIKPINICHHSIM.

Karuosi cjaoBa: ONTUMI3aLlis TECTOBHX CIICHApIiB; TECTyBaHHS] MPOTPaMHOTO
3a0e3neueHHs; Q-HaBuanHs, Q-TaOmuus; aenbra-fAeOarriir, MOKPUTTS Koay; MiHimizamis, C++; areHr;
HABYaHHS 3 MAKPIIICHHSM.

Bibliographic descriptions / Bioaioepaghiuni onucu

Hulevych, M. (2025), "Evaluation of the effectiveness of the test scenarios forming method for
C++ libraries based on a Q-learning agent”, Management Information Systems and Devises, No. 4 (187),
P. 20-46. DOI: https://doi.org/10.30837/0135-1710.2025.187.020

I'ymesra M. B. OrmintoBanHs e(QeKTUBHOCTI MeToay (opMyBaHHS TECTOBHX CIICHApPIiB IS
C++ 0i0mioTek Ha OCHOBI areHTa 3 Q-HaBUAHHAM. AGMOMAMUZ06AHI CUCTeMU YNPABLIHHA Md NPULAOU

aemomamuxu. 2025. Ne 4 (187). C. 20-46. DOI: https://doi.org/10.30837/0135-1710.2025.187.020

	Analysis of literature
	Purpose and objectives
	1. Classic Q-learning agent model
	About the Authors / Відомості про авторів
	Bibliographic descriptions / Бібліографічні описи

