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ВИБІР МЕТОДИКИ ОЦІНЮВАННЯ ТОЧНОСТІ ДЛЯ ЗАВДАНЬ 
АНАЛІЗУ СТАТИЧНИХ СЦЕН НА ОСНОВІ ЗГОРТКОВИХ 

НЕЙРОННИХ МЕРЕЖ 
 
Об’єктом вивчення є методики кількісного оцінювання точності й надійності прогнозів згорткових 
нейронних мереж у завданнях аналізу статичних сцен, зокрема семантична сегментація та монокулярне 
метричне оцінювання глибини. Використані теоретичні, аналітичні та емпіричні наукові  
методи дослідження: порівняльний аналіз, синтез, систематизація, експериментальне моделювання тощо. 
Актуальність роботи зумовлена тим, що традиційні метрики оцінювання точності не завжди беруть до уваги 
особливості завдань аналізу статичних сцен – дисбаланс класів, локалізацію та малі об’єкти, шум чи змінне 
освітлення. Це знижує точність результатів і потребує впровадження гібридних метрик, гранично-
орієнтованих і метрик кількісного оцінювання невизначеності (UQ) для забезпечення надійності й безпеки 
систем. Метою дослідження є обґрунтування й вибір найбільш ефективної та доцільної методики оцінювання 
точності для завдань аналізу статичних сцен на основі згорткових нейронних мереж способом порівняння й 
систематизації наявних метрик, аналізу їх переваг і обмежень у різних класах завдань і розроблення 
інтегрованого фреймворку для підвищення якості оцінювання. Для досягнення окресленої мети необхідно 
виконати такі завдання: провести порівняльний аналіз традиційних метрик; дослідити сучасні підходи й вибір 
релевантних метрик і протоколів для конкретних класів завдань; розробити концептуальний гібридний 
фреймворк, що забезпечує повну валідацію моделі, зважаючи на перекриття, геометричну точність і 
калібрування впевненості. Унаслідок дослідження сформульовано висновки. Для аналізу статичних сцен 
оптимально комбінувати такі метрики: accuracy й F1 – з метою класифікації, IoU і mAP – для детекції. 
Найбільш ефективні – mAP для складних сцен і для детекції малих об’єктів. Запропоновано гібридний 
фреймворк, що забезпечує повну валідацію моделі, покриваючи загальний об’єм, геометричну якість і 
надійність. Цей фреймворк поєднує гранично-орієнтовані метрики для забезпечення геометричної точності 
та методологію кількісного оцінювання невизначеності для калібрування впевненості та локалізації помилок. 
Це розв’язує проблему невідповідності між високою точністю моделей та обмеженістю стандартних метрик 
валідації. Перехід до Boundary IoU та метрик відстані, зокрема Hausdorff Distance, забезпечить масштабно-
збалансовану та значно вищу чутливість до помилок на контурах, слугуватиме інструментом для виявлення 
катастрофічних локальних геометричних відхилень. Концептуальний фреймворк стимулює розроблення 
більш надійних і точних архітектур ЗНМ. 

Ключові слова: комп’ютерний зір; семантична сегментація; детекція об’єктів; згорткові нейромережі; 
метрики оцінювання. 
 

1. Вступ 
 
Швидкий розвиток архітектур згорткових нейронних мереж (ЗНМ) і їх широке 

застосування в завданнях аналізу зображень (семантична сегментація, детекція, 
класифікація сцен) призвів до ситуації, коли результати різних робіт важко порівнювати 
через розбіжності в наборах даних, метриках і протоколах оцінювання. Автори сучасних 
досліджень 2022–2025 рр. наголошують на необхідності стандартизації підходів до 
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оцінювання, інтеграції метрик для калібрування й оцінювання невизначеності, а також у 
cross-dataset-бенчмарках, що моделюють реальні доменні зсуви. 

Точність оцінювання відіграє важливу роль, оскільки статичні сцени часто містять 
складні елементи, такі як малі об’єкти, шум або варіативне освітлення. Проблема полягає в 
тому, що традиційні метрики оцінювання, наприклад загальна точність, не завжди беруть 
до уваги особливості завдань, як-от дисбаланс класів або локалізацію об’єктів.  

Згідно з останніми тенденціями перехід від класичних метрик до спеціалізованих, 
зокрема mAP та IoU, стає необхідним для об’єктивного порівняльного оцінювання моделей 
ЗНМ (CNN). Це особливо актуально в умовах швидкого розвитку глибокого навчання, де 
нові архітектури вимагають адаптованих методів оцінювання для забезпечення високої 
продуктивності й узагальнення. 

Особливо високі вимоги до точності висуває монокулярне метричне оцінювання 
глибини (MMDE). Тоді як традиційні методи часто прогнозують лише відносну глибину, 
MMDE прагне до отримання карт глибини з абсолютною шкалою. Цей перехід є необхідним 
для забезпечення геометричної узгодженості, що дає змогу надійно розгортати системи в 
реальному світі без додаткового калібрування. З огляду на критичні застосування, де висока 
точність і надійність є життєво важливими (наприклад, у самокерованих транспортних 
засобах або медичній діагностиці), методики оцінювання продуктивності ЗНМ мають бути 
не менш досконалими, ніж самі моделі [1]. 

 
2. Аналіз літературних джерел і постановка проблеми дослідження 

 
Останні дослідження щодо оцінювання CNN для аналізу статичних сцен зосереджені 

на вдосконаленні метрик, зважаючи на особливості завдань, зокрема на детекцію малих 
об’єктів у складних сценах чи класифікацію зображень. Наприклад, у роботі [2], 
присвяченій детекції малих цілей у складних статичних сценах, автори пропонують мережу 
IIHNet, оцінюючи її за допомогою прецизії, повноти, mAP і AP50, демонструючи 
покращення на 20–70 %, якщо порівнювати з базовими моделями, такими як Faster RCNN.  

Аналогічно в дослідженні впливу архітектурних факторів CNN на класифікацію 
зображень віддаленого зондування впроваджено метрики загальної точності (OA), кількості 
параметрів та FLOPs, показано, що збільшення глибини мережі покращує семантичне 
навчання, але надмірна глибина знижує OA [3]. 

Серед загальних метрик для CNN в завданнях аналізу зображень виокремлюють 
accuracy, precision, recall, F1-score, mAP і IoU як основні для класифікації,  
детекції та сегментації.  

Літературний огляд точності в CNN для віддаленого зондування виявив перехід від 
традиційних метрик (OA, Kappa) до DL-специфічних, таких як F1-score (використовується 
в 59 % досліджень для бінарних завдань) та mAP (29 %), з акцентом на P-R-криві для 
завдань з порогами. У дослідженні класифікації сцен на датасеті Places2 застосовується  
top-5 accuracy як основна метрика через неоднозначність міток, з ResNet-34 досягаючи 
38.57 % top-1 accuracy [4–6]. Дослідники візуальних методів пояснюваності CNN 
упроваджують нові метрики, зокрема Average Drop та Insertion / Deletion scores,  
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для оцінювання правильності пояснень, пов’язаних із точністю моделі в завданнях 
класифікації зображень. Унаслідок вивчення останніх наукових праць можемо виокремити 
детальні дослідження калібрування та невизначеності, розвідки, що аналізують помилки 
метрик і їх інтерпретацію в реальних завданнях, серед яких огляди з калібрування [7], 
великі систематичні дослідження невизначеності та UQ [8], якості наборів даних і нових  
ReM-версій COCO [9], а також статті, присвячені помилковим інтерпретаціям метрик у 
зображеннях. Загалом тенденції 2022–2025 рр. вказують на інтеграцію метрик 
пояснюваності з традиційними для кращого розуміння поведінки мереж.  

У сфері семантичної сегментації постійний розвиток енкодер-декодер архітектур 
спрямований на підвищення точності, особливо на стиках об’єктів. Дослідники 
розробляють методи, які посилюють внутрішню узгодженість об’єктів і забезпечують 
"загострення границь". Існують також підходи, що поєднують глибокі ЗНМ з умовно 
випадковими полями (CRF) для ефективного захоплення контекстуальних зв’язків між 
семантичними ознаками й ознаками глибини, що демонструє прагнення до покращення 
точності на рівні моделювання [10]. 

У контексті оцінювання глибини прогрес від відносної до абсолютної метричної 
глибини (MMDE) є вирішальним для забезпечення геометричної узгодженості, необхідної 
для 3D-реконструкції та навігації. Оскільки ці завдання вимагають високоточного 
просторового оцінювання, методи валідації мають  забезпечувати виявлення будь-яких 
геометричних неточностей, що можуть призвести до збоїв у реальних системах [11]. 

Основний недолік полягає в boundary un-awareness (нечутливість до границь).  
Цей ефект зумовлений тим, що різниця в точному позиціюванні або формі границі 
несуттєво впливає на загальний бал, доки площа перекриття залишається незмінною. 
Традиційні метрики не здатні адекватно оцінювати моделі, оптимізовані для роботи зі 
складними структурами й дрібними гранулярними елементами. 

Недосконалість традиційних метрик перекриття для об’єктивного оцінювання 
геометричної точності ЗНМ, поряд із зростанням потреби в кількісному оцінюванні 
надійності прогнозу, формує ключову проблему дослідження. Необхідність удосконалення 
методик оцінювання точності аналізу статичних сцен на основі ЗНМ визначається двома 
основними напрямами, які потрібно виконати одночасно, а саме: 

- розроблення або адаптація метрик, які забезпечують чутливість до граничних 
помилок і топології, водночас замінити або доповнити обмежені метрики перекриття; 

- інтеграція методології кількісного оцінювання невизначеності (UQ) для оцінювання 
надійності та калібрування впевненості. 

 
3. Мета й завдання дослідження 

 
Метою цієї роботи є обґрунтування та вибір найбільш ефективної та доцільної 

методики оцінювання точності для завдань аналізу статичних сцен на основі згорткових 
нейронних мереж способом порівняння та систематизації наявних метрик, аналізу їх 
переваг і обмежень у різних класах завдань і розроблення інтегрованого фреймворку для 
підвищення якості оцінювання. 
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Для досягнення окресленої мети необхідно розв’язати такі завдання: 
- провести порівняльний аналіз переваг і обмежень ключових метрик, таких як 

accuracy, precision, recall, F1-score, IoU та mAP, у контексті різних архітектур CNN; 
- дослідити сучасні підходи й обрати релевантні метрики й протоколи для конкретних 

класів завдань; 
- розробити концептуальний гібридний фреймворк, що забезпечує повну валідацію 

моделі з огляду на перекриття, геометричну точність і калібрування впевненості. 
 

4. Виклад основного матеріалу 
 
Аналіз статичних сцен за допомогою CNN передбачає завдання класифікації, 

сегментації та детекції об’єктів, де оцінка точності є критичною. Основні методики 
оцінювання можна поділити на метрики, орієнтовані на класифікацію (наприклад, accuracy, 
precision, recall, F1-score), і метрики, орієнтовані на локалізацію  
(наприклад, Intersection over Union (IoU) та mean Average Precision (mAP)) з адаптаціями 
для конкретних архітектур CNN. 

 
Рис. 1. Метрики оцінювання точності 
 

Традиційні метрики достатні для збалансованих наборів даних у завданнях 
класифікації, проте незбалансовані або просторово складні сцени в статичному аналізі 
вимагають гібридних протоколів, що містять як глобальні, так і попіксельні оцінки [12]. 
Accuracy вимірює частку правильних прогнозів серед усіх зразків, забезпечуючи простий 
глобальний індикатор продуктивності. Її перевага полягає в простоті та інтерпретації для 
збалансованих завдань класифікації з використанням архітектур, таких як ResNet, де вона 
ефективно оцінює загальну надійність моделі в маркуванні статичних сцен (наприклад, 
міських середовищ). Однак accuracy дає збій у незбалансованих наборах даних, типових 
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для аналізу сцен, де домінантні класи (наприклад, фонові пікселі) завищують показники, 
маскуючи невдачі на рідкісних об’єктах (як приклад, пішоходи).  

Precision (TP/(TP + FP)) і Recall (TP/(TP + FN)) розв’язують окреслені проблеми, 
зосереджуючись на продуктивності позитивного класу. Зокрема precision перевершує  
в мінімізації помилкових тривог у завданнях виявлення з YOLO або Faster R-CNN, тоді як 
recall забезпечує всебічне охоплення елементів сцени. Обмеження передбачають 
чутливість до порогів упевненості та незбалансованості класів, що може призводити  
до компромісів у реальному часі статичного виявлення [13]. 

F1-score – це гармонійне середнє між precision та recall, що балансує їх, 
використовується в 40–59 % досліджень для мультикласових завдань. Метрика F1-score 
пропонує стійкість для незбалансованих статичних сцен у класифікаторах або детекторах 
CNN і є особливо корисною для оцінювання варіантів U-Net у семантичній сегментації,  
де коефіцієнт Dice (еквівалент F1 для бінарних випадків) кількісно оцінює перетин, 
досягаючи високих показників у наборах даних міського керування. Однак F1-score ігнорує 
просторові нюанси, обмежуючи його корисність в архітектурах, що вимагають точності 
меж, таких як CNN на базі розширених конволюцій (наприклад, DeepLab). 

ІoU оцінює просторовий перетин (перетин / об’єднання) між передбаченими й 
реальними регіонами, що є критичним для сегментації в статичних сценах. Обмеження 
передбачають  нечутливість до помилок меж і помилкових позитивів поза регіонами 
перетину, роблячи ІoU менш ідеальним для завдань з пріоритетом на виявлення.  

mAP агрегує середню точність по класах та порогах IoU, перевершуючи у виявленні 
об’єктів з YOLOv8, де фіксує варіації масштабів у статичних сценах (наприклад, mAP 0.88 
у порівняльних дослідженнях). Недоліком mAP є обчислювальна інтенсивність і залежність 
від вибору порогу, що може недооцінювати моделі в розріджених сценах. 

У табл. 1 систематизовано інформацію про метрики, які найчастіше використовуються, 
їх переваги й недоліки. 

 
Таблиця 1. Порівняльна характеристика традиційних метрик 
 

 

 
Метрика 

 
Застосування 

 
Переваги 

 
Недоліки 

Рекомендоване 
застосування в 

архітектурах CNN 

Accuracy Класифікація 

Проста, 
інтуїтивна; 
добре для 

збалансованих 
даних 

Вразлива до 
незбалансованості; 
маскує помилки в 
рідкісних класах 

 
ResNet  

для класифікації сцен  
(наприклад, ADE20K) 

Precision Детекція 

Мінімізує 
помилкові 
позитивні; 

корисна для 
уникнення 

помилкових 
тривог 

Ігнорує помилкові 
негативні; 

залежить від 
порогу 

 
YOLO/Faster R-CNN  

для виявлення в 
спостереженні 
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Кінець таблиці 1 
 

 
Вибір метрик також залежить від архітектури CNN, яка використовується для аналізу 

статичних сцен. Наприклад, для завдань класифікації зображень, де потрібно визначити,  
до якого класу належить зображення, часто використовують accuracy, precision, recall  
та F1-score.  

Для завдань сегментації зображень, де потрібно розділити зображення на різні ділянки, 
застосовують IoU та інші метрики, основані на піксельній точності.  

Для завдань детекції об’єктів, де потрібно виявити та локалізувати об’єкти на 
зображенні, використовується mAP. 

Для класифікації в статичних сценах (наприклад, маркування сцен з ResNet) найбільш 
релевантні accuracy та F1-score, доповнені precision/recall для імбалансу; протоколи 
передбачають крос-валідацію на наборах даних, наприклад ADE20K. Завдання виявлення 
об’єктів (наприклад, YOLO на наборах типу COCO для статичних зображень) 
пріоритизують mAP з порогами IoU, даючи змогу аналізувати помилки через криві 
precision-recall для критичних застосувань, як-от спостереження.  

Семантична сегментація (наприклад, U-Net на CamVid) рекомендує mIoU та Dice/F1  
з протоколами, що містять точність переднього плану для класів, орієнтованих на безпеку, 
та час інференсу для реального часу.  

Гібридні протоколи, які поєднують mAP/IoU для паноптичних завдань, з’являються для 
всебічного розуміння сцен, забезпечуючи узгодження метрик з обмеженнями розгортання, 
наприклад FPS в автономних системах [14, 15]. 

 

 
Метрика 

 
Застосування 

 
Переваги 

 
Недоліки 

Рекомендоване 
застосування в 

архітектурах CNN 

Recall Детекція 

Забезпечує 
виявлення всіх 

об’єктів; 
критична для 

повноти 

Може призводити 
до багатьох 
помилкових 
позитивних 

 
U-Net для сегментації  
в медичному аналізі 

F1-score Сегментація 
Балансує precision 
та recall; стійка до 
незбалансованості 

Ігнорує просторові 
деталі; припускає 
рівну важливість 

Гібридні моделі для 
імбалансованих наборів 

IoU Локалізація 

Вимірює 
просторову 

точність; стійка 
до імбалансу 

класів 

 
Нечутлива до 

помилок меж; не 
для класифікації 

 
HRNet/PSPNet  

для семантичної 
сегментації 

mAP Комплексні 
сцени 

Агрегує по 
класах та 

порогах; всебічна 
для 

багатокласових 
завдань 

Обчислювально 
складна; залежить 

від вибору IoU 

 
YOLOv8 для виявлення 

об’єктів у статичних 
сценах 
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У табл. 2 подано інформацію щодо використання метрик і протоколів оцінювання для 
різного класу завдань. 

 
Таблиця 2. Релевантні метрики та протоколи для конкретних класів завдань 
 

Клас  
завдання 

Рекомендовані 
метрики 

Протоколи 
оцінювання 

Приклади 
архітектур CNN 

Класифікація зображень Accuracy, F1-score, 
Precision/Recall 

Крос-валідація, 
аналіз імбалансу  

на ADE20K 
ResNet, VGGNet 

Виявлення об’єктів 
mAP, IoU,  

Precision-Recall 
криві 

Агрегація по класах, 
пороги IoU 0.5–0.95 
на COCO-подібних 

наборах 

YOLO,  
Faster R-CNN 

Семантична сегментація mIoU, F1/Dice, 
Foreground Accuracy 

Попіксельне 
оцінювання,  

час інференсу  
на CamVid/Cityscapes 

U-Net, HRNet 

 
Щоб об’єктивно оцінити якість контурів було розроблено метрики, зосереджені на 

геометричних властивостях границь, а не на об’ємному перекритті.  
Boundary IoU (BIoU) є ключовим показником, спрямованим на подолання низької 

чутливості стандартного IoU до помилок границь, особливо для великих об’єктів. Замість 
того, щоб розглядати всі пікселі маски, BIoU обчислює перекриття-над-об’єднанням лише 
для пікселів, розташованих у граничному регіоні (Boundary Region). 

Основні переваги BIoU полягають у його здатності надавати кількісний градієнт,  
який безпосередньо покращує якість граничної сегментації, а також у його збалансованій 
реакції на помилки незалежно від розміру об’єкта. BIoU зменшує упередженість,  
яку демонструє стандартний IoU щодо великих структур [16]. 

Метрики на основі відстаней, як-от Hausdorff Distance (HD), Average Symmetric Surface 
Distance (ASSD) і Normalized Surface Distance (NSD), забезпечують оцінку геометричної 
розбіжності між контурами. Синергетичне використання BIoU (як стабільного індикатора 
загальної якості контуру) та HD (як індикатора катастрофічних локальних помилок) 
гарантує повний контроль геометричної точності. 

Для досягнення надійності в критичних системах оцінювання точності має бути 
доповнене оцінюванням впевненості моделі. UQ є обов’язковим елементом для валідації 
надійності та безпеки. Кількісне оцінювання невизначеності дає змогу встановити, 
наскільки добре ймовірнісні прогнози моделі (впевненість) відповідають її фактичній 
точності (калібруванню). 

Надійність механізмів UQ здебільшого залежить від обраної метрики.  
Серед ключових метрик калібрування та локалізації помилок можна виокремити такі:  
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Expected Calibration Error (ECE) – стандартна метрика калібрування – кількісно оцінює 
узгодженість між оголошеною впевненістю моделі та її фактичною точністю. Адаптація 
ECE для сегментації є необхідною для валідації надійності прогностичних імовірностей;   

− Predictive Entropy (предиктивна ентропія) значно перевершує інші метрики UQ,  
як-от варіація чи взаємна інформація, з погляду як калібрування (ECE-label), так і здатності 
до локалізації помилок (Uncertainty-Error overlap). Висока ентропія в певному регіоні сцени 
чітко вказує, де саме прогноз є найменш надійним.    

− Area Under the Sparsification Error curve (AUSE) оцінює ефективність самого 
механізму UQ; вимірює, наскільки успішно оцінки невизначеності можуть бути використані 
для ідентифікації та відкидання найбільш невпевнених пікселів або патчів, підвищуючи цим 
загальну надійність системи. Застосування AUSE підтверджує, чи є механізм UQ практично 
корисним для розроблення механізмів фільтрації та відмови. 
 

5. Обговорення результатів дослідження 
 

Комплексне оцінювання точності ЗНМ для аналізу статичних сцен вимагає 
паралельного використання кількох груп метрик. Запропоновано гібридний фреймворк, 
який забезпечить повну валідацію моделі, покриваючи загальний об’єм, геометричну якість 
та надійність: 

Overlap (IoU, Dice Score) – базова оцінка загального покриття. 
Boundary / Geometry (BIoU, HD, ASSD) – гарантування геометричної точності  

та виявлення граничних помилок. 
Reliability / Calibration (ECE, Predictive Entropy, AUSE) – оцінювання впевненості  

та локалізації помилок. 
Цей підхід розв’язує проблему узгодження цілей: моделі, які оптимізуються  

під функції втрат, що містять гранично-орієнтовані метрики (наприклад, 
Generalized Surface Loss), будуть належним чином винагороджені в процесі валідації  
за допомогою BIoU та HD. 

BIoU забезпечує більш справедливу й масштабно-збалансовану оцінку продуктивності, 
що є критично важливим у роботі з гетерогенними сценами, де об’єкти сильно різняться за 
розміром.  

Інтеграція UQ, особливо через метрики, які здатні до локалізації помилок,  
є необхідною для підвищення надійності систем.  

Predictive Entropy завдяки своїй високій надійності дає змогу точно ідентифікувати 
ділянки сцени, де прогноз є найменш впевненим.  

Предиктивна ентропія вимірює ступінь "чистоти" розподілу ймовірностей класу в 
кожному пікселі. Що вища ентропія, то більш невизначений прогноз моделі щодо того, до 
якого класу належить піксель. Ентропія ефективно використовується для локалізації 
помилок. Гібридний фреймворк оцінювання – це багатовимірний інструментарій, 
призначений для забезпечення повної картини продуктивності ЗНМ за межами простого  
відсотка перекриття. У табл. 3 відтворено взаємодію компонентів запропонованого 
гібридного фреймворку. 
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Таблиця 3. Взаємодія компонентів запропонованого фреймворку 
 

Метрика Що вимірює? Вирішувана 
проблема 

Ключова роль у 
фреймворку 

IoU/Dice Об’ємне 
перекриття 

Базовий рівень 
точності 

Установлення загального 
успіху 

Boundary IoU 
(BIoU) 

Точність контуру Нечутливість IoU  
до границь 

Геометрична якість, 
збалансована оцінка 

Hausdorff 
Distance (HD) 

Максимальна 
помилка 

Виявлення локальних 
катастроф 

Індикатор безпеки  
та наявності викидів 

Predictive Entropy Локальна 
невизначеність 

Локалізація 
ненадійних зон 

Забезпечення надійності, 
механізм відмови 

ECE Калібрування 
впевненості 

Недовіра до 
ймовірностей 

Валідація довіри  
до прогнозів моделі 

 
Нижче наведений рекомендований протокол для репрезентативного оцінювання 

моделей аналізу статичних сцен. 
1. Чітко задокументувати препроцесинг, аугментації та розмітку; зберегти seed-и  

й опублікувати код. 
2. Обирати набір метрик відповідно до завдання: для сегментації – mIoU +  

boundary F-score + Pixel Accuracy; для детекції – COCO mAP(0.5:0.95) +  
AP@0.5 + recall@K + analysis by object sizes. 

3. Побудувати довірчі інтервали (bootstrapping) для ключових метрик. 
4. Провести cross-dataset evaluation, якщо мета – узагальнення в змінених доменах. 
5. Оцінити калібрування (ECE, NLL) і в разі потреби застосувати методи калібрування 

(temperature scaling) або UQ (ensembles, MC Dropout). 
6. Провести robustness checks (шум, змінене освітлення, геометричні трансформації) і, 

якщо необхідно, adversarial robustness аналіз. 
Етапи оцінювання, їх основна мета й ключові метрики оцінювання моделей відповідно 

до рекомендованого протоколу подано в табл. 4. 
 
Таблиця 4. Етапи оцінювання, їх основна мета й ключові метрики оцінювання моделей  
 

№ Етап оцінювання Основна мета Ключові дії / метрики 

1 
Відтворюваність та 

документація 

Забезпечення можливості 
повторного отримання 

результатів 

* Документація: препроцесинг, 
аугментації, розмітка 

* Фіксація всіх Seed-ів  
(NumPy, ML framework) 

* Публікація Коду 

2 
Релевантний набір 

метрик 

Об’єктивне оцінювання 
якості моделі відповідно 

до задачі 

* Сегментація: mIoU, Boundary 
F-score, Pixel Accuracy 

* Детекція: COCO mAP (0.5:0.95), 
AP@0.5, Recall@K, $AP_S, AP_M, 

AP_L$ 
3 Довірчі інтервали 

(Bootstrapping) 

Оцінювання статистичної 
значущості та 

варіативності результатів 

* Побудова 95 % довірчих 
інтервалів для ключових метрик 

методом Bootstrapping 
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Кінець таблиці 4 
 

№ Етап оцінювання Основна мета Ключові дії / метрики 

4 
Cross-Dataset 

Evaluation 
Оцінювання узагальнення 

моделі на нові домени 

* Тестування моделі на 
зовнішньому, OOD  

(Out-of-Domain) наборі даних 

5 
Калібрування та 

UQ 

Оцінювання надійності 
передбачуваних 

імовірностей 

* Оцінювання: ECE  
(Expected Calibration Error), NLL 

* Методи  
(за потреби): Temperature Scaling, 

Ensembles, MC Dropout 

6 Robustness Checks 
Оцінювання стійкості до 

природних і ворожих 
спотворень 

* Природна Robustness: 
тестування на шум, змінене 

освітлення, геометричні 
трансформації 

* Adversarial Robustness: аналіз 
стійкості до ворожих атак  

(напр., PGD) 
 

Цей протокол забезпечує чіткий і всебічний підхід до оцінювання моделей аналізу сцен 
за межами лише метрик точності (accuracy / mAP) і беручи до уваги статистичну значущість 
(CI), узагальнення (cross-dataset), калібрування (ECE) та стійкість (robustness). 

Результати використання цього протоколу для оцінювання моделі детекції об’єктів 
YOLOv8-L на наборі COCO подано в табл. 5. 

 
Таблиця 5. Результати використання протоколу для оцінювання моделі детекції об’єктів  
 

№ Етап оцінювання Деталі реалізації / 
метрики Результати  Висновок 

1 Відтворюваність 
Модель: YOLOv8-L. 
Аугментації: Mosaic, 

Flip, MixUp, HSV 

Фіксація 
Global_Seed = 101. 

Код навчання 
опубліковано 

Висока 
відтворюваність 

2 Набір метрик 

COCO mAP 
(0.5:0.95), AP@0.5, 
Recall@100. Аналіз 

за розмірами. 

mAP: 49.8 %. 
AP@0.5: 68.2 %. 
$AP_S$ (Small): 

31.5 %. 

Добра загальна 
продуктивність, 
але слабкість до 
малих об’єктів 

3 Довірчі інтервали 
Bootstrapping 

 (500 ітерацій) для 
COCO mAP 

95 % CI для mAP: 
[49.1 %, 50.5 %] 

Результат 
статистично 
стабільний 

4 Cross-Dataset 
Тестування на Open 

Images V6 
 (OOD-набір) 

mAP на Open 
Images: 38.9 %. 

(падіння  
на 10.9 п.п.) 

Модель чутлива до 
зміни домену 
(Domain Shift) 

5 Калібрування 
Оцінювання ECE та 
NLL. Застосування 
Temperature Scaling 

ECE до: 6.2%. ECE 
після: 4.1 %.  

NLL: 0.75 

Початково 
перекалібрована, 

успішно виправлено 
Temperature Scaling 
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Кінець таблиці 5 
 

№ Етап оцінювання Деталі реалізації / 
метрики Результати  Висновок 

6 Robustness Checks 
Вплив шуму, зміни 

освітлення та 
adversarial атак 

Падіння mAP: 
шуми (-6.7 %), 

контраст (-8.3 %), 
PGD Attack (-48.3 %) 

Дуже вразлива до 
Adversarial Attacks 
і зміни контрасту 

 
Приклад використання протоколу оцінювання для завдання семантичної сегментації з 

використанням моделі U-Net на аерофотознімках наведено в табл. 6. 
 
Таблиця 6. Результати використання протоколу для оцінювання моделі  

семантичної сегментації 
 

№ Етап оцінювання Деталі реалізації / 
метрики Результати  Висновок 

1 Відтворюваність 

Модель: U-Net 
(VGG-16 як 

кодувальник). 
Препроцесинг: 

нормалізація RGB  
до $[0, 1]$ 

Seed: Global_Seed = 
888. Аугментації: 

випадкове 
обертання, 

випадкова зміна 
масштабу (0.8–1.2) 

Забезпечено чітке 
документування 
архітектури та 

аугментацій 

2 Набір метрик 

mIoU, Boundary F-
score, Pixel Accuracy. 

Аналіз за класами: 
вода, рослинність, 

пісок, будівлі 

mIoU (загальний): 
75.3 %. Boundary F-
score: 70.1 %. mIoU 

(пісок): 89.5 %. 
mIoU (будівлі):  

60.2 % 

Хороша загальна 
продуктивність,  
але слабкість у 

сегментації 
будівель (менші та 
складніші форми) 

3 Довірчі інтервали 

Bootstrapping  
(700 ітерацій)  

для метрики mIoU 
(будівлі) 

95 % CI для mIoU 
(будівлі): [58.5 %, 

61.9 %] 

Результат для 
складного класу  

є статистично 
значущим 

4 Cross-Dataset 

Тестування на  
OOD-наборі Potsdam 

(аерофотознімки з 
іншого міста / 

камери) з мапінгом 
класів 

mIoU на Potsdam: 
65.9 %.  

(падіння на 9.4 п.п.) 

Модель чутлива до 
змін у кольоровій 
гамі та роздільній 

здатності зображень 
іншого домену 

5 Калібрування 

Оцінювання ECE  
та NLL 

ECE: 5.1 %.  
NLL: 0.45 

Модель має помірне 
перекалібрування. 

Необхідне пост-хок 
калібрування (напр., 
Temperature Scaling) 

6 Robustness Checks 

Тестування на: 
симуляція хмарності 
(зміни яскравості та 

контрасту), стиснення 
JPEG (висока якість) 

Падіння mIoU: 
симуляція  

хмарності (-4.8 %), 
стиснення  

JPEG (-1.1 %) 

Чутлива до 
затемнення / зміни 

контрасту, що імітує 
хмарну погоду 
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Цей приклад демонструє, як протокол може бути застосований для оцінювання  
моделі сегментації аерофотознімків, виявляючи її слабкості у сегментації малих  
об’єктів (наприклад, будівель, зелених насаджень тощо) та чутливість до  
погодних умов (хмарності). 

 
6. Висновки й перспективи подальших досліджень 

 
Порівняння методик демонструє, що для аналізу статичних сцен оптимально 

комбінувати метрики: accuracy та F1 для класифікації, IoU і mAP для детекції. 
Найефективніша mAP для складних сцен і для детекції малих об’єктів.  

Перспективи передбачають розроблення гібридних метрик з елементами 
пояснюваності для кращого розуміння помилок CNN.  

Дослідження також підтвердило недоліки використання традиційних метрик перекриття 
(IoU, Dice Score) для об’єктивного оцінювання геометричної точності ЗНМ в аналізі 
статичних сцен через їх нечутливість до граничних помилок (boundary un-awareness).  

Удосконалення методик оцінювання вимагає переходу до гібридного фреймворку, 
основаного на двох аспектах: 

- гранична точність – упровадження Boundary IoU (BIoU) та метрик відстані  
(HD, ASSD) забезпечить необхідну чутливість до помилок на контурах, що є життєво 
важливим для високоточних геометричних застосувань, таких як MMDE; 

- надійність – інтеграція кількісного оцінювання невизначеності (UQ) з пріоритетом 
Predictive Entropy та ECE, є обов’язковою для валідації безпеки та калібрування впевненості 
моделі. 

Запропонований гібридний фреймворк забезпечує більш повну й об’єктивну картину 
продуктивності ЗНМ, об’єднуючи оцінювання геометричної якості та калібрування 
впевненості. Упровадження гранично-орієнтованих метрик стимулює розроблення 
архітектур і функцій втрат, які безпосередньо покращують точність контурів, оскільки ці 
зусилля будуть належним чином винагороджені. Це підвищує загальну надійність систем 
комп’ютерного зору в критичних доменах. 

Подальші дослідження можуть будуть присвячені адаптації метрик до реального часу 
й інтеграції з великими моделями, як Vision Transformers, розробленню гібридних функцій 
втрат, що безпосередньо оптимізують гранично-орієнтовані метрики (наприклад,  
BIoU Loss або Loss-функції на основі поверхневої відстані), для забезпечення максимальної 
узгодженості між навчанням і валідацією. 

Перспективними також є дослідження та уніфікація UQ-фреймворків, зокрема 
розроблення метрик, які поєднують просторову локалізацію невизначеності з чутливістю 
до границь (Boundary UQ) для підвищення надійності оцінювання критичних об’єктів. 
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and select the most effective and appropriate accuracy assessment method for static scene analysis  
tasks based on convolutional neural networks by comparing and systematizing existing metrics, analyzing 
their advantages and limitations in different classes of tasks, and developing an integrated framework  
to improve the quality of assessment. To achieve this goal, the following tasks are solved  
in the article: to conduct a comparative analysis of traditional metrics; to study modern approaches  
and select relevant metrics and protocols for specific classes of tasks; to develop a conceptual hybrid 
framework that provides full model validation, taking into account overlap, geometric accuracy  
and confidence calibration. As a result of the study, the following conclusions were made: for the analysis 
of static scenes, it is optimal to combine the metrics: accuracy and F1 – for classification, IoU and mAP – 
for detection. The most effective are mAP for complex scenes and for the detection of small objects.  
A hybrid framework is proposed that provides full validation of the model, covering the total volume, 
geometric quality and reliability. This framework combines boundary-oriented metrics to ensure geometric 
accuracy and the methodology of quantitative uncertainty assessment for confidence calibration and error 
localization. This solves the problem of the mismatch between the high accuracy  
of models and the limitations of standard validation metrics. The transition to Boundary IoU  
and distance metrics, in particular Hausdorff Distance, will provide scale-balanced and significantly higher 
sensitivity to errors on the contours, and will serve as a tool for detecting catastrophic  
local geometric deviations. The conceptual framework stimulates the development of more robust  
and accurate CNN architectures. 

Keywords: computer vision; semantic segmentation; object detection; convolutional neural networks; 
evaluation metrics. 
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