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MODELING AND ANALYSIS OF GRAPH NEURAL NETWORKS FOR
OPTIMIZATION ROUTING IN INFOCOMMUNICATION NETWORKS

A mathematical model for routing was formulated as a graph-based problem, with key
metrics introduced, including delay, number of hops, and throughput. The architectural features of
graph neural networks were analyzed, focusing on message passing, attention mechanisms,
aggregation, and feature updating. A comparative analysis of GCN, GAT, and GENConv was
conducted, justifying the selection of GENConv as the core architecture for edge-level
classification in routing tasks. A model based on GENConv with an MLP decoder was developed
and trained on a large graph dataset. Its performance was evaluated in terms of accuracy, average
delay, and the success rate of route construction. A comparison with a classical algorithm was also
performed regarding solution quality and execution time.

1. Introduction
In modern infocommunication networks, characterized by high dynamics, complex

topology, and increasing demands for transmission speed and reliability, the problem of optimal
routing remains critically unresolved. Traditional routing algorithms often fail to adapt to real-
time changes. They disregard contextual network features and have limited self-organizing
capabilities [1]. This results in several negative theoretical consequences. There is no universal
mathematical model that combines the topological flexibility of graph structures with the
adaptability of neural networks. The potential of Graph Neural Networks (GNNs) in the context
of routing is not sufficiently understood, especially their ability to generalize to new topologies.
There is also a lack of research that integrates machine learning with classical theories of network
management.

The unresolved nature of the optimal routing problem leads to decreased efficiency of data
transmission in large and complex networks (such as IoT, 5G, and SDN). It results in increased
delays, packet losses, and node overload caused by non-adaptive routes. It also makes it
impossible to scale existing solutions to heterogeneous or dynamic network environments [2].

At the same time, modern machine learning approaches, particularly GNNs, open new
possibilities for modeling network behavior, accounting for traffic characteristics, and predicting
optimal routes in context. The distinctive feature of using GNNs in routing tasks lies in their
ability to work directly with the graph structure of the network, where nodes represent network
devices and edges represent physical or logical connections with specific metrics, such as delay.
Unlike traditional methods, GNNs can learn from historical examples and generate routes that
align with the global structure of the network. Although the resulting paths are not always strictly
optimal in terms of the shortest route, their computation is significantly faster, which is critical
for large, heavily loaded, or rapidly changing topologies. In such conditions, the priority shifts
from absolute optimality to the ability to respond quickly and consistently to changes. A
particularly promising approach is edge-level classification, where the neural network decides
whether each edge should be included in the route between a pair of nodes.

The theoretical significance of the study lies in the development of new routing models based
on Graph Neural Networks, which are capable of accounting for the structural properties of the
network, the contextual relationships between nodes, and the dynamics of change. The proposed
approach makes it possible to rethink classical notions of routing as a static process and transform
it into an adaptive, learning system.

The applied significance is determined by the need for intelligent solutions in modern
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infocommunication systems, where traditional methods no longer provide the required level of
performance. The results of the study can be applied to optimize routing in SDN networks, mobile
MANET networks, and IoT networks. They can also be used to improve the efficiency of real-
time traffic management and to develop self-learning routing systems capable of adapting to
changes without external intervention.

2. Analysis of related work and research problem formulation

In recent years, GNNs have seen active development in the field of infocommunications.
In [3], the RouteNet model is examined, which employs GNNs to predict delay, jitter, and packet
loss in SDN networks. It demonstrates the ability to generalize to new topologies and traffic
patterns not represented in the training data. However, the analysis of scientific sources indicates
a number of limitations that hinder their practical application.

In [4], the GraphSAGE model is proposed for predicting network load. Despite achieving
high accuracy in static topologies, the model does not adapt to dynamic changes, which limits its
applicability in mobile networks.

The authors of [5] investigate the use of Graph Attention Networks (GAT) for routing in
SDN. Although the architecture is flexible, it requires significant computational resources,
making real-time deployment challenging.

In [6], GNNs are applied in IoT networks. The model improves delay metrics but does not
take energy consumption into account, which is a critical parameter in IoT environments.

An approach that combines GNNs with reinforcement learning demonstrates adaptability
but becomes unstable when the topology changes, reducing its reliability [7].

For route classification, the authors of [8] employ graph autoencoders. The model is effective
on simulation data but has not been tested on real networks.

In [9], GNNs are proposed for detecting high-traffic nodes. However, the model disregards
contextual relationships between nodes, which leads to incorrect routing.

GNN-based routing in MANET networks is analyzed in [10]. Although performance
improves, the model suffers from delays caused by weight coefficient calculations.

The authors of [7] apply clustering before routing based on GNNs. The clustering is
performed without considering traffic dynamics, which reduces accuracy.

For traffic congestion prediction in urban networks, GNNs are used in [11]. The model is
not scalable to global infocommunication systems.

An adaptive GNN model is proposed for SD-WAN in [12]. Although the performance is
high, the model does not consider security aspects.

In [13], GNNs are explored for energy saving. The model does not adapt to topology
changes, which limits its applicability.

In [14], a GNN-based model is developed for routing in hybrid networks. Despite its
effectiveness in a test environment, the model does not account for delays caused by route
changes.

The use of GNNS in the context of QoS-oriented routing is analyzed in [15]. The model does
not provide sufficient accuracy under high traffic variability.

Thus, most existing solutions fail to consider the dynamics of topology changes, have limited
scalability, are not adapted to real-time operation, and do not account for energy efficiency or
security.

The relevant scientific problem is the development of an adaptive, scalable, and energy-
efficient routing model based on Graph Neural Networks, capable of operating in real time,
accounting for topology dynamics, and ensuring secure data transmission. This study is aimed at
addressing this problem.
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3. Research aim and objectives

The aim of this study is to model and analyze Graph Neural Networks for optimizing routing
in infocommunication networks.

Achieving this goal will enable the use of Graph Neural Networks in real time within
dynamic networks, where decision-making speed is critical, particularly under conditions of high
topological complexity, unstable channels, and strict performance requirements. The proposed
approach opens prospects for further research, especially in the areas of multi-criteria routing,
adaptation to real-time metric changes, and integration with other components of network
intelligence.

To achieve this goal, the following tasks must be addressed:

— construction and generation of graph data for training;

— formulation of features and target labels;

— development of the model architecture and training;

— analysis of performance and time characteristics.

4. Materials and Methods

The subject of this research is the application of Graph Neural Networks to the routing
problem in infocommunication networks.

The object of the study is the process of route construction within an infocommunication
network.

The research methods include the analysis of existing routing algorithms, a theoretical
examination of the operating principles of Graph Neural Networks, the design of a model
architecture based on the GENConv framework, as well as its experimental training and
evaluation on a generated dataset of network topologies.

GNNss are a class of models capable of efficiently processing data represented as graphs,
preserving both the structural information about relationships between entities and the local
features of those entities. GNNs have gained widespread adoption in tasks where topology plays
a critical role — particularly in routing, where the graph reflects the physical or logical structure
of a network [16].

In GNNgs, a graph is typically represented as a 5-tuple G = (V, E, X, F, A), where V is the set
of nodes, E is the set of edges, X € RIVIX@ ig the node feature matrix, F € RIEIXK is the edge
feature matrix, and 4 € {0,1}/VXIVl is the adjacency matrix defining the graph structure. Here, d
denotes the node feature dimension, and k denotes the edge feature dimension. In the case of a
weighted graph, the binary adjacency matrix A is replaced by a weight matrix W € RIVIXIVI,
where each element w,,,, corresponds to a routing metric (e.g., delay) between nodes u and v [17].

Unlike classical neural networks, where each input sample is treated independently, Graph
Neural Networks (GNN5s) update the representation of each node by considering not only its own
features but also the information received from its neighboring nodes in the graph.

This process is known as message passing, and it involves iterative exchange of information
between adjacent nodes. At each layer of the model, every node v € V updates its state h,, using
the aggregated information from its neighbors u € N(v):

hY = UPDATE® (hy™,m{?), (1)
m = AGGREGATEV ({¢ (hS ™, fun) :u = TV, u € N@)}), @)

where hl(,l) is the hidden state of node v at layer [, | = 1, L, with L being the number of layers in

the model, v = 1, |V|, ¢ is a message generation function that takes into account the features of
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the neighbor u and the edge (u,v), AGGREGATE and UPDATE are differentiable functions,
which can be implemented, for instance, as mean, sum, or learnable transformations.

In addition to node features, edge features f,,,, play a crucial role in GNNs, as they can
encode routing metrics such as delay or bandwidth. These values can directly influence the
message passing process, enabling the model to make more informed decisions about the
relevance of information received from specific neighbors. These values can directly influence
the message passing process, allowing the model to make more informed and selective decisions
about the relevance of information received from individual neighbors.

Overall, GNNs provide a flexible framework for modeling dependencies in graphs, enabling
each graph element (node or edge) to construct its representation based on both structure and local
context.

In routing tasks, this allows models to learn from real traffic patterns or network topologies
and to uncover patterns that are beyond the reach of traditional algorithms.

The first generations of Graph Neural Networks, such as Graph Convolutional Networks
(GCN) and Graph Attention Networks (GAT), have served as the foundation for numerous
models in graph-related tasks, including the processing of network topologies.

However, both architectures have limitations that significantly affect their effectiveness in
complex, deep, or highly dynamic graphs — such as those found in telecommunications networks
[18, 19].

GCN performs neighborhood feature aggregation using averaging weighted by the
normalized adjacency matrix. The model updates are defined as follows [3]:

HU+D — 0(5—1/245—1/2H(1)W(z>), 3)

where A = A + I is the adjacency matrix with added self-loops, D is the diagonal degree matrix,
H® are the hidden features, and W® are the layer-I learnable parameters.

Although this model is simple and effective, it does not account for differences between
neighboring nodes. Moreover, deep architectures quickly encounter the problem of
oversmoothing, where node representations become indistinguishable and lose their expressive
power.

GAT addresses this limitation by introducing an attention mechanism — a dynamic approach
that allows the model to independently determine which neighboring nodes are more important.
For each edge (u, v), an attention coefficient ,,,, is computed, which reflects the importance of
the message sent from node u to node v. These coefficients are normalized via the softmax
function, enabling their interpretation as weights in the aggregation process [9]:

exp(LeakyReLU(a” [Wh,||Wh,]))
Ay = ,
“" Ykenw)exp(LeakyReLU(aT [Wh ||[Wh,]))

(4)

where LeakyReLU is a modified version of the standard ReLU activation function that allows a
small negative gradient for negative inputs, typically with a slope coefficient of a = 0,2. This
helps to avoid the "dying neuron" problem where units stop learning, which is particularly
important for computing attention coefficients that may take both positive and negative values.

The GENConv (Generalized Aggregation Graph Convolution) architecture, in turn,
represents a more modern approach that combines the flexibility and expressiveness of attention
mechanisms with the scalability and stability of classical models.

A key feature of GENConv is learnable aggregation — an aggregation function that is not
fixed but is learned jointly with the rest of the model. For example, it can behave like a max
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aggregator or a softmax-weighted average. This is achieved through a parameterized softmax
function with temperature scaling:

_exp(hy/7)
 Ykenw) exp(hye/T)’

My ()
where 7 is a learnable temperature parameter. A small T results in behavior similar to max
aggregation (where a single message dominates), while a large T leads to uniform averaging.
Thus, GENConv enables the model to autonomously adapt to the local graph structure and
determine the most appropriate aggregation strategy depending on the number of neighbors,
feature variability, and topological structure.
The feature update formula in GENConv is defined as:

(-1
h®D = MLPO [ Y + AGG ({uT:u € N(ﬂ}) , (6)

where MLP denotes a nonlinear transformation with normalization and dropout, AGG is the
learnable aggregator, and the addition implements a residual connection.

GENConv demonstrates stable performance even with a large number of layers (30+),
whereas models like GCN and GAT typically suffer from performance degradation. This is
particularly important in the context of routing tasks in telecommunication networks, where
relevant information about the optimal path may be located at a considerable distance within the
topology, and the model must be able to accurately capture it [18].

In classical tasks addressed by Graph Neural Networks, the primary objective is often node
classification or link prediction. However, in the task of constructing a route between a given
source-target node pair, edge classification becomes central — specifically, determining which
edges should be included in the route.

Unlike the node-level approach, where the model generates a vector for each node and makes
decisions based on it, in edge-level classification, vectors are constructed for edges. In this case,
each edge (u, v) € E is represented as a combination of node features h,, h,,, edge features f,,,,,
and additional information that may be specific to the given source—target pair. The input to the
edge classifier takes the form of a concatenation:

Zyy = [hu Il Ayl fuv Il dli Il dll;]l ™)

where h,,, h,, are the hidden representations of the nodes after passing through the GNN, f,,,, are
the edge features, and d3, d}, are heuristic distances to the source and target nodes, respectively,
e.g., precomputed shortest-path distances, which add routing-specific context to the classification
task.

The edge-level approach allows the model to frame the routing task as a binary classification
problem, where each edge is evaluated to determine whether it belongs to the path between a
given source s and target t. Based on these predictions, the model can construct a route that aligns
with the graph context, taking into account both local features and the global structure.

In the next step, the vector is passed to a decoder implemented as a Multi-Layer Perceptron
(MLP). The perceptron consists of several fully connected layers, each applying a linear
transformation, an activation function (e.g., ReLU), as well as dropout or normalization. The final
layer typically contains a single neuron with a sigmoid activation function, which outputs the
probability that the edge is part of the route between s and t.

The edge classification approach using an MLP enables the model to simultaneously account
for the topological context, connection characteristics, and relevance to the routing task. Unlike
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models that attempt to navigate step-by-step from node to node, the edge-level approach allows
for constructing a complete view of the route in the form of either a binary edge mask or a
probabilistic field.

An advantage of the edge-level approach is its flexibility and accuracy compared to the
node-level paradigm. The model can take into account the specific characteristics of each edge,
as well as the interaction between the connected nodes.

5. Research results

5.1. Graph data construction and generation for training

To train the Graph Neural Network (GNN) tailored for solving routing tasks in complex and
dynamic telecommunication networks, a custom synthetic dataset was constructed. In total, 3000
graphs were generated, each simulating the topology of a medium- or large-scale network with a
variable number of nodes, structural heterogeneity, and diverse connection characteristics.

The graphs were generated using the Python programming language and the NetworkX
library [19,20,21], which provides tools for creating random graphs and working with topological
structures. The number of nodes in each graph was randomly selected within the range of 50 to
100, allowing for both simple and structurally rich scenarios. Graph construction employed the
networkx.gnm_random_graph generator, which creates a graph based on a fixed number of nodes
and a randomly chosen number of edges in the range from N+10 to 3N, where N is the number
ofnodes. Connectivity was enforced as a mandatory condition and verified using nx.is_connected.

Each edge in the graph was assigned a transmission delay, represented as a random value in
the range from 0.001 to 2.0 seconds. This was implemented using the random.uniform function,
which ensured a uniform distribution of delays within the specified interval. Such modeling
makes it possible to simulate both high-speed communication links and slow or congested lines,
thereby providing sufficient diversity in training conditions.

For each graph, a random pair of nodes was selected to serve as the source and target. Based
on the edge weights, the shortest path between them was computed using Dijkstra’s algorithm as
implemented in the NetworkX library. This path was then used to generate binary labels: edges
belonging to the path were marked as positive (label 1), while all others were marked as negative
(label 0). In this way, the task was formulated as an edge classification problem in the context of
route construction.

All graphs (Figs. 1, 2) were converted into a format compatible with the PyTorch Geometric
library [21]. Each sample includes an edge index matrix (edge index), edge features (edge attr),
node features (x), and labels (edge label). Node features consisted of binary indicators specifying
whether the node is the source or target, the normalized degree, and the number of hops to the target
node (Table 1). Edge features were represented by the delays assigned during graph generation.

Table 1
Structure in .pt for PyTorch Geometric
Field Description Dimension
X Node features [N,d]
edge index Indices of node pairs for each edge [2,E]
edge attr Edge features (delay) [E.k]
edge_label Binary labels: whether the edge belongs to the route [E]
source Index of the source node [1]
target Index of the target node [1]
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Fig. 2. Example of generated graph 2
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5.2. Feature and target label definition

Since the model is tasked with classifying edges in the context of a route between a given
pair of nodes, it was critically important to design input features that not only capture local
properties of graph elements but also provide context specific to the routing task.

To this end, several types of features were selected for both nodes and edges, enabling the
model to effectively localize the source and target, infer the routing direction, and account for the
quality of connections.

Node features include binary indicators is_source and is_target, which are essential for
enabling the model to distinguish the currently active source-target pair (s,t). Without this
information, the routing task would be ill-defined, since the model processes the graph as a whole
and must explicitly know where the route starts and ends. These features, therefore, provide task-
specific addressability.

The normalized node degree is a simple yet important topological feature that provides the
model with insight into the local connectivity of a node. A high degree is often associated with
key routing nodes, while peripheral nodes typically have limited capacity for traffic forwarding.

Additionally, heuristic meta-information is introduced in the form of the number of hops
from a node to the target. This value is computed based on the shortest path without considering
edge weights and provides a general notion of the node’s distance from the destination.

Although this feature is not precise in a weighted graph, it helps the model orient itself
toward the target by combining local decisions with global context.

As for edges, the sole but crucial feature is latency — a value that directly corresponds to the
routing metric. In real-world networks, latency or its derivatives are typically used as the primary
criterion for path optimization, making the inclusion of this feature essential for effective model
training.

Training labels are generated based on the shortest path between nodes s and t, computed
using Dijkstra’s algorithm. This approach frames the learning task as binary edge classification,
where the positive class corresponds to edges that belong to the optimal path, and the negative
class to all others. Such formulation scales well and enables the use of standard neural network
optimization techniques for a pathfinding task that would otherwise be combinatorially complex.

Thus, the constructed system of features and labels enables the model to simultaneously
account for local graph parameters, the global routing objective, and the network metric to be
optimized. This establishes a logical bridge between the graph’s topological structure and the
practical requirements of route construction in a network.

5.3. Model architecture and training

The developed model (Table 2) implements an edge-level classification approach using a
Graph Neural Network based on GENConv convolutional layers. The architecture is designed to
enable efficient information propagation between graph nodes and accurate evaluation of each
edge in the context of a specific routing task. At the core of the model is the
EdgeEncoderOptimized module, which consists of three sequential GENConv layers and a single
MLP decoder that takes as input the constructed feature vector for each edge.

Each GENConv layer performs message aggregation from neighboring nodes using softmax
normalization with a learnable temperature coefficient, allowing the aggregation behavior to
adapt from uniform to selective. After each convolutional layer, BatchNormld is applied to
stabilize training, and Dropout is used to prevent overfitting. All hidden layers have a
dimensionality of 64.

As a result, each node in the graph obtains a generalized representation that incorporates not
only its own features but also the context of its local neighborhood over multiple hops.

©sv. Shtangey, L.I. Melnikova, A.V. Marchuk, O.V. Lynnyk, O.K. Sokolov
47



«ACY ma npunadu asmomamuru», 2025, sunyck 186 ISSN 0135-1710

Table 2
Neural network architecture
Component Type Parameters
convl GENConv in: 4, out: 64, aggr: softmax
bnl BatchNorm1d 64
conv2 GENConv in: 4, out: 64, aggr: softmax
bn2 BatchNorml1d 64
conv3 GENConv in: 4, out: 64, aggr: softmax
bn3 BatchNorml1d 64
dropout Dropout p=0,3
edge mlp MLP decoder (3 layers) 193 — 64 — 32 — 1, ReLU + BatchNorm

As aresult, a vector of size 193 is formed and passed to the MLP decoder, which consists of
three fully connected layers:

— First layer: Linear(193 — 64) with ReLU activation and BatchNorm;

— Second layer: Linear(64 — 32) with ReLU;

— Third layer: Linear(32 — 1) without activation (output is a logit for subsequent sigmoid
processing).

ReLU activations enable the model to learn nonlinear dependencies between structural and
contextual parameters, while BatchNorm after the first layer ensures stability of the activation
distribution and accelerates convergence.

For training, the generated data was divided into a training set (80% of the dataset) and a
validation set (20% of the dataset). Binary cross-entropy with logits was used as the loss function
during training, incorporating class imbalance through weighted scaling. Optimization was
performed using the Adam algorithm with a fixed learning rate of 1073, The batch size was set
to 1 (one graph per iteration), and the model was trained for 35 epochs. Performance evaluation
relied on metrics such as loss, accuracy, and the success rate of correctly reconstructed routes.

Figure 3 shows the loss function, which steadily decreases on the training data and remains
well-controlled on the validation set.

Loss over Epochs

0.48 i i i | = Train
J val

0.46
0.44 1

0.42

Loss

0.40

0.38 4

0.36

0.34 -

Epoch

Fig. 3. Loss function plot on training and validation data
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Figure 4 shows the edge classification accuracy, where the validation accuracy consistently
exceeds 94%, occasionally reaching 95-96%, indicating reliable generalization. Figure 5 presents
detailed results from the final epochs, including all key metrics. The most indicative are the high
route construction success rate and stable accuracy.

Edge Accuracy

0.96
—— Train
0.95+4 — Val

0.94
0.93 +

0.92 1

Accuracy

0.91 1
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0.89

0 5 10 15 20 25 30 35
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Fig. 4. Accuracy plot on training and validation data
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Fig. 5. Training results during the final epochs

Thus, the developed model demonstrates consistently high classification performance, is
capable of constructing coherent routes under varying graph complexities, and shows effective
generalization even in the presence of noise and topological variability. The combination of
GENConv and the MLP decoder has proven to be effective for edge-level routing tasks.

5.4. Performance and timing analysis

To evaluate not only classification accuracy but also the quality of the constructed routes, a
visualization was performed comparing the predicted paths with the reference (shortest) routes
for a set of graphs.

Figures 6 and 7 show examples of constructed paths, where the predicted route is highlighted
in yellow and the optimal (shortest) route in blue. In the first case (Fig. 6), the model precisely
reproduced the path found by Dijkstra’s algorithm, with an identical total delay of 2.2731 (Fig. 8).
In the second example (Fig. 7), the model’s route differs, it has fewer hops but slightly higher
total delay (Fig. 9). This result indicates that the model is capable of discovering alternative paths
that are close to optimal or represent a trade-off between different metrics.
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Predicted vs True Path
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Fig. 6. Comparison of predicted and optimal routes, example 1
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Fig. 7. Comparison of predicted and optimal routes, example 2

©sv. Shtangey, L.I. Melnikova, A.V. Marchuk, O.V. Lynnyk, O.K. Sokolov
50



«ACY ma npunadu asmomamuru», 2025, sunyck 186 ISSN 0135-1710

Predicted path: [85, 73, 3, 96, 48]
Ground truth : [85, 73, 3, 96, 48]
Path length : 5 (true: 5)

Pred latency: 2.2731
True latency : 2.2731

Fig. 8. Comparison metrics for case 1

Predicted path: [9, 57, 49, 54]
Ground truth : [9, 31, 24, 16, 32, 54]

Path length : 4 (true: 6)
Pred latency: 1.9908
True latency : 1.8471

Fig. 9. Comparison metrics for case 2

Figure 10 presents a comparison of delays for each of the 500 tested graphs, showing both
the true latency and the latency of the routes predicted by the model.

Despite the structural variability of the topologies, the two curves exhibit a strong
correlation. This indicates that even when the predicted path differs from the optimal one, the
model can reproduce the delay with sufficient accuracy, staying within an acceptable margin of
deviation.

Latency Comparison: True vs Predicted

Fig. 10. Comparison of predicted and optimal paths by total latency on the test set

A performance comparison between the GNN model and the classical routing approach is
presented in Figure 11. It shows the average route construction time for both Dijkstra’s algorithm
and the GNN model in batch inference mode. In graphs with 50—100 nodes, the model
demonstrated approximately twice the throughput. The experiment was conducted in the Google
Colab cloud environment with the following specifications:

— processor: Intel(R) Xeon(R) CPU @ 2.20GHz, 2 logical cores, 56 MB cache;
— RAM: ~13 GB;
— GPU: NVIDIA Tesla T4, 16 GB VRAM, CUDA 12.4.

This result is attributed to the fact that the model does not need to reconstruct the path from
scratch for each query — it operates as a universal router for the entire topology.

In addition to speed, a key advantage of the neural network — based approach is its ability to
instantly respond to changes in the network structure without re-running algorithmic search. This
is particularly important in dynamic environments, where the number of nodes or edge weights
may change in real time.
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Execution Time: Dijkstra vs Batched GNN

Avg time per graph (ms)

0.00 -

Dijkstra GNN (bl‘atched)

Fig. 11. Comparison of average routing time between Dijkstra’s algorithm and the GNN model

6. Discussion of research results

This research has confirmed that graph neural networks based on the GENConv architecture
can effectively address routing problems in complex network topologies. The model
demonstrated high edge-level classification accuracy, exceeding 94% on the test sets, indicating
its ability to generalize knowledge and adapt to novel graph scenarios.

Notably, in some of the tested graphs, the model generated routes that did not exactly match
the classically computed shortest paths but exhibited similar or even better topological properties,
particularly a reduced number of hops. This suggests that the model is capable of adaptively
selecting trade-offs between metrics such as latency, path length, and reliability, which is
especially relevant in dynamic network environments.

The analysis of temporal characteristics revealed the advantages of the GNN-based approach
during inference. The model demonstrates twice the performance compared to Dijkstra’s
algorithm on graphs with 50-100 nodes, which is explained by the absence of the need to
recompute the route for each query. This enables rapid response to changes in network topology —
a critical requirement for modern infocommunication environments.

The GENConv architecture with learnable aggregation ensures stability at greater network
depth and flexible adaptation to the local structure of the graph. Even in cases of topological
variability or noise, the model demonstrates consistent performance by generating coherent
routes. The inclusion of additional heuristic information (such as the number of hops to the target
node) further enhances the model’s ability to navigate the global context of the route.

Despite the high performance, questions remain open regarding scalability to ultra-large
topologies and improving interpretability for integration into critical systems. The proposed edge-
level approach opens up promising directions for further research — particularly in the areas of
multi-objective routing, training on real-world networks, real-time metric adaptation, and
integration with other components of SDN infrastructure.

7. Conclusions

Within the scope of the research objective, a routing model based on a Graph Neural
Network with edge-level classification was developed, implemented, and experimentally
investigated. The model was built on the GENConv architecture, and the following tasks were
addressed.

A custom synthetic dataset was created for training the Graph Neural Network aimed at
solving the routing problem in complex and dynamic telecommunication networks. In total, 3000
graphs were generated, each modeling the topology of a medium- or large-scale network with a
variable number of nodes, structural heterogeneity, and diverse connection characteristics. The
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graphs were generated using the Python programming language and the NetworkX library, which
provides tools for generating random graphs and working with topological structures.

Several types of features were selected for both nodes and edges to enable the model to
effectively localize the source and target, navigate the route direction, and account for connection
quality. The node features include the binary indicators is_source and is_target, which are
necessary for the model to distinguish the currently active pair of nodes.

A model was developed that implements the edge-level classification approach using a
Graph Neural Network based on GENConv convolutional layers. The architecture enables
efficient information propagation between graph nodes as well as accurate evaluation of each
edge in the context of a specific routing task. At the core of the model lies the
EdgeEncoderOptimized module, which consists of three sequential GENConv layers and one
MLP decoder that processes the generated feature for each edge.

A performance comparison was conducted between the graph-based model and Dijkstra’s
algorithm. It was found that in inference mode, the graph model operates significantly faster,
especially on large graphs, and does not require re-exploring the entire route space for each query.
This makes the proposed approach suitable for real-time use in dynamic networks, where
decision-making speed is critical.

The obtained results confirm that Graph Neural Networks can serve as an effective
alternative to traditional routing algorithms, particularly under conditions of high topological
complexity, channel instability, and strict performance requirements. The proposed approach
opens new perspectives for further research, especially in the areas of multi-criteria routing,
adaptation to real-time metric changes, and integration with other components of network
intelligence.
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