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ENHANCED MULTIDIMENSIONAL NEO-FUZZY CLASSIFICATION
SYSTEM AND ITS LEARNING FOR THE VIDEO CLASSIFICATION TASK

A novel hybrid neo-fuzzy system for video classification, which includes
multidimensional neo-fuzzy components with adjustable synaptic weights and kernel
membership functions, is proposed. This system combines the strengths of extended neo-fuzzy
neurons (ENFN) and neo-fuzzy units (NFU) with nonlinear activation functions. By integrating
extended nonlinear synapses (ENS) and leveraging the neuro-fuzzy Takagi-Sugeno-Kang
inference system, proposed architecture enhances the approximating capabilities of traditional
models. This allows the system to effectively address the task of image recognition, including
real-time video stream classification, while maintaining a high level of accuracy, as
demonstrated by computational experiment.

An optimization algorithm that introduces a novel approach to learning in the advanced
neo-fuzzy system for video classification is proposed. Using the cross-entropy learning criterion
with one-hot encoding, the algorithm precisely adjusts synaptic weights through the 6-rule,
enhanced by adaptive learning rates. Incorporating a forgetting factor, it dynamically adjusts
parameters for either stochastic approximation or rapid convergence. This dual capability
ensures robustness and efficiency, significantly improving learning speed and accuracy in
complex video classification tasks.

1. Introduction

Data stream mining [1]-[4], particularly in video classification, is increasingly vital in the
digital age, where the proliferation of video data necessitates efficient processing and analysis
methods. Video classification involves identifying and categorizing the content of video
sequences, which are essentially streams of images. The challenge is amplified by the often low
quality of images, especially when capturing moving objects, leading to the need for advanced
techniques to ensure accuracy and efficiency.

Handling data stream mining in video classification is inherently complex due to several
factors. The volume and velocity of video data are extremely high, particularly with the
widespread use of digital video recorders (DVRs), video servers, and IP cameras. This results in
massive amounts of data that need to be processed in real-time or near real-time, which is
computationally intensive and requires robust data handling capabilities.

The quality and resolution of video streams often vary. The Main Stream typically provides
high-quality video, while the Sub Stream and Third Stream offer lower resolutions to reduce the
load on networks and devices. This variability complicates the extraction of consistent features
across different streams and impacts the accuracy of classification algorithms. Moreover, videos,
especially those capturing moving objects, often suffer from low image quality due to motion
blur, occlusions, and varying lighting conditions. These factors make it challenging to accurately
identify and classify objects, necessitating the use of advanced techniques such as motion
estimation, image enhancement, and noise reduction.

Advanced IP cameras and DVRs support Triple Streaming, enabling simultaneous
transmission of three different streams. Integrating data from these streams requires balancing
different resolution, frame rate, bitrate, and compression settings, adding to the complexity of the
task. Given the varying quality and resolution of video streams, especially under low-quality
conditions, traditional image processing techniques may fall short.

In summary, the complexity of handling data stream mining for video classification lies in
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managing the high volume and velocity of data, dealing with varying quality and resolution,
requiring significant computational resources, and employing advanced techniques to ensure
accurate and efficient processing.

2. Analysis of literary data and formulation of the research problem

In the rapidly evolving field of video classification, various methods [2], [5]-[7] have been
developed to handle the complex task of accurately identifying and categorizing video content.
Each method offers unique advantages but also encounters significant challenges, especially in
dynamic and intricate scenarios. This overview examines several key video classification methods
such as Frame-Based CNN [8], [9], Two-Stream Approaches [10]-[12], 3D Convolutional Neural
Networks (3D CNNs) [13], Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) [14], Attention-Based Models [15], and Hybrid Approaches.

While these systems provide a range of benefits including comprehensive feature extraction,
high accuracy, effective sequential data processing, and efficient handling of large datasets, they
also present notable disadvantages in complex video classification scenarios. General challenges
include high computational and resource demands, difficulty in capturing long-term and complex
dependencies, and complexity in implementation and integration.

Fuzzy Systems [16]-[ 18] excel in these areas by efficiently handling imprecision, integrating
contextual information, and dynamically adjusting to varying conditions. This makes them a more
robust and adaptable solution for complex video classification tasks, providing an edge in
scenarios where traditional methods fall short.

Introduced in [19] Takagi-Sugeno-Kang (TSK) algorithm forms the backbone of many fuzzy
logic systems. It enhances video classification by modeling the system with rules that handle
nonlinear relationships efficiently. The arbitrary order system properties of the TSK algorithm allow
it to manage complex, multidimensional data more effectively than traditional linear models. This
flexibility is crucial in video classification, where data often exhibit nonlinear and intricate patterns.

Even though classical neuro-fuzzy systems such as TSK have plenty of the advantages, still
maintaining a complex structure that can become increasingly intricate as the number of input
variables grows. This complexity makes them less scalable and harder to manage, particularly in
applications involving large datasets or high-dimensional data. Another point to take into account
is that these systems often rely on predefined fuzzy rules and membership functions that can be
difficult to adapt and optimize.

Computational efficiency also is incredibly important side of the problem to look into, and
speaking about classical neuro-fuzzy systems, due to their complexity, can be computationally
intensive, requiring significant processing power and memory. This can limit their applicability
in real-time or resource-constrained environments.

Meanwhile neo-fuzzy systems, such as extended neo-fuzzy neurons (ENFN) [20], [21] and
neo-fuzzy units (NFU) [22], [23], are designed to be simpler and more scalable. They incorporate
extended nonlinear synapses and advanced inference mechanisms, which allow them to manage
larger and more complex datasets more efficiently.

Neo-fuzzy systems employ adaptive learning algorithms that automatically adjust the
synaptic weights and membership functions. This adaptability improves the system's performance
over time and reduces the need for extensive manual intervention.

Neo-fuzzy systems are designed to be more computationally more efficient. By leveraging
advanced techniques like the Takagi-Sugeno-Kang (TSK) model of arbitrary order, they can
perform complex calculations more efficiently, making them suitable for real-time applications.

In summary, while classical neuro-fuzzy systems provide a foundational framework for
integrating neural networks and fuzzy logic, they face several limitations related to complexity,
scalability, adaptability, computational efficiency, and handling of nonlinearity and variability.
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Neo-fuzzy systems address these limitations by incorporating advanced features such as extended
nonlinear synapses, adaptive learning algorithms, and higher-order inference models, making them
more efficient, flexible, and robust for complex video classification tasks and other applications.

3. Goal and tasks of the research

The goal of the research is to develop and optimize a novel hybrid neo-fuzzy system for
video classification that effectively addresses the task of image recognition, including real-time
video streams classification, while maintaining a high level of accuracy. Therefor there the
following tasks to solve in the article:

a) design a novel hybrid neo-fuzzy system:

1) develop multidimensional neo-fuzzy components with adjustable synaptic weights and
specialized membership functions, that are usually used in the neuro-fuzzy systems also called
kernel activation functions (includes triangular function, Gaussian, Cauchian etc., here we used
Gaussian membership function);

2) integrate extended neo-fuzzy neurons (ENFN) and neo-fuzzy units (NFU) with
nonlinear activation functions;

3) incorporate extended nonlinear synapses (ENS) and leverage the neuro-fuzzy Takagi-
Sugeno-Kang inference system to enhance the approximating capabilities of traditional models;

b) propose and implement an optimization algorithm:

1) introduce a novel approach to learning using the cross-entropy learning criterion with
one-hot encoding;

2) precisely adjust synaptic weights through the d-rule, enhanced by adaptive learning
rates;

3) incorporate a forgetting factor to dynamically adjust parameters for either stochastic
approximation or rapid convergence, ensuring robustness and efficiency.

4. Architecture of the enhanced multidimensional neo-fuzzy classification system

This study proposes a novel hybrid neo-fuzzy system for video classification, combining the
strengths of extended neo-fuzzy neurons (ENFN) and neo-fuzzy units (NFU) with nonlinear
activation functions. By integrating extended nonlinear synapses (ENS) and leveraging the neuro-
fuzzy Takagi-Sugeno-Kang inference system, proposed architecture enhances the approximating
capabilities of traditional models. The proposed enhanced multidimensional neo-fuzzy
classification system (EMNFCS) effectively processes vector signals from images, utilizing two
information processing layers to deliver precise fuzzy membership levels for classification. This
approach addresses challenges in handling high-volume, variable-quality video data, ensuring
robust and efficient performance. The proposed system has four layers and its architecture
presented in Fig. 1.

The system, in short, works as following:

1. Input signal processing: the system receives a vector signal of images to be classified.

2. First hidden layer is formed with Extended Nonlinear Synapses (ENS), producing fuzzy
signal.

3. Second hidden layer is formed with combination of Extended Neo-Fuzzy Neurons
(ENFN) and summation blocks. These neurons aggregate the processed signals from multiple
ENS.

4. Third hidden (output) layer is formed with nonlinear softmax activation functions. These
functions generalize traditional sigmoidal activation functions for classification systems with
many outputs.
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Fig. 1. Architecture of the enhanced multidimensional neo-fuzzy classification system

On the input signal processing stage, the input signal is presented in the form of vector-
image X, (l ) , here ¢ is a point in a discrete time, and this instance from the training set feds to the

first hidden layer. As it was previously mentioned, the first hidden layer is formed by extended
nonlinear synapses S ,S. S, , that is defined as a multiplication between synaptic vector

i12~i299~in >
weights and fuzzified with membership function signal. Here i =1,2,...,m , and m is equal to the
number of classes and the number of synapses corresponds to the number of observations in the
sample which is n.

As established in prior research [16]-[18] a standard neo-fuzzy neuron is constructed from
nonlinear synapses. Each synapse executes the fuzzy inference based on the Takagi-Sugeno-Kang
model of zero order, commonly referred to as Wang-Mendel reasoning. This research influenced
the reasoning of the second hidden layer. The output of the first hidden layer passes to the second

hidden layer in the form ¢{" (xn (t)) , that includes extended nonlinear synapse, to the summation

blocks producing general membership levels per each class.
oY (xn (t)) = Z;(p';l) (x_,. (t)) = Z;szj (xj (t)), (1)
J= J=

where W; is synaptic weight; i =1,2,...n is number of the synapse.

Eventually they are defuzzified with the softmax activation function, producing output
signals of the system:

¥, (t) = soft max />’ = exp (goim )Zm:exp((pi”)) =
P

= soft max(W,-T (t _I)Si (x(t))),

)

where -/ is the previous point in time, obtaining adjusted weights through a learning process
based on previously observed data, and the sum of all output signals are equal to one.
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5. Optimization of the enhanced multidimensional neo-fuzzy classification system

In optimizing complex neural systems, leveraging efficient learning criteria and encoding
techniques is crucial for achieving high performance and accurate classification. The proposed
system employs the cross-entropy learning criterion coupled with one-hot encoding of the
reference signal. This combination facilitates precise adjustments of synaptic weights based on
prior data, enhancing the system's adaptability and convergence speed.

The proposed optimization method involves using cross-entropy as the learning criterion,
paired with one-hot encoding for the reference signal. This approach generates an external
reference signal vector with zeros and a single one to denote the correct class. By minimizing this
criterion through standard gradient procedures, the synaptic weights of each extended neo-fuzzy
unit are adjusted according to the delta rule:

w () =w (=)= ()Y, E () =w, (t=1)+7,(1)e (1), (x(1)) G)

where # is the learning rate; e is the learning error.
This method can exhibit both filtering and tracking properties by adjusting the learning rate
n follows:

7 () =7 (¢)=ar, (t=1)+]s, (x())| » 4)
where o is the forgetting factor, and it is defined in the interval between 0 and 1. For o= 1, the
process adopts properties akin to the Goodwin-Ramadge-Caines algorithm (stochastic
approximation), while for o=0, it aligns with the Kaczmarz-Widrow-Hoff [24] algorithm,
ensuring rapid convergence to the optimal solution.

By leveraging these advanced learning techniques, the proposed system achieves high
performance, robust adaptability, and efficient processing, thereby presenting a powerful solution

for complex classification tasks in dynamic environments.

6. Results of the computer experiments

The computational experiment aims to validate the effectiveness and efficiency of the
proposed enhanced multidimensional neo-fuzzy classification system for video classification
tasks. This experiment involves several key steps to demonstrate how the system handles real-
time video data processing and classification. Also several criteria were chosen which is to show
the effectiveness of the proposed approach in comparison to the alternative methods to solve the
task described below.

The mentioned criteria include accuracy, precision, recall, computational efficiency and
scalability. First three describe the proportion of correctly classified instances out of the total
instances, accuracy of the positive predictions made by the model, and model's ability to identify
all relevant positive instances within the dataset accordingly.

The computational efficiency refers to the time and resources required to process and classify
data. In the context of video classification, it is typically measured in milliseconds per frame
(ms/frame). High computational efficiency indicates that the system can process each frame
quickly and with minimal computational overhead, making it suitable for real-time applications.

Scalability is the system’s ability to handle increasing amounts of data or larger datasets
effectively, meaning that the system will give response to the user within 0.5 second. It evaluates
whether the system can maintain its performance levels as the data size grows. High scalability
means the system can process large volumes of video data without significant degradation in
performance. This includes not only size of the dataset but also quality of the video and frames
per millisecond. Within this experiment we took into consideration video with the average value
25 fps and standard of feedback CIF that has resolution 352x288. In other words, the system can
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effectively handle large datasets and therefore has high scalability.

The computational experiments for this research were conducted on a Dell Latitude 7420, a
high-performance laptop equipped with an Intel Core 17-1185G7 processor, 16 GB of DDR4 RAM,
and a 512 GB NVMe SSD. The system's integrated Intel Iris Xe Graphics and Windows 11 Pro (64-
bit) OS supported the graphical and computational demands of video classification tasks.

The development environment included PyCharm Professional 2021.2, Git 2.33, and
Anaconda 3 (v2021.11). Python 3.9 was used alongside libraries such as NumPy, SciPy, Scikit-
learn, TensorFlow, and Keras for numerical operations, scientific computations, machine
learning, and neural network development.

For data visualization and manipulation, Matplotlib, Seaborn, and Pandas were employed,
while SQLite 3.36 managed data storage. An agile methodology and Pytest 6.2.4 ensured iterative
development, testing, and code reliability. This setup facilitated efficient experiments, yielding
insights into the hybrid neo-fuzzy system's performance for video classification.

The HMDBS51 dataset is a crucial resource for action recognition research, comprising 6,766
video clips categorized into 51 action classes sourced from movies and YouTube. It offers a
diverse range of actions from simple gestures to complex activities, making it ideal for testing the
generalizability of video classification systems. The varied video quality and settings mirror real-
world conditions, challenging systems to be robust and adaptable. This dataset is particularly
beneficial for evaluating the proposed enhanced multidimensional neo-fuzzy classification
system, enabling comprehensive performance benchmarking.

This dataset was modified by exporting frames from videos, forming a part of the overall
data set. In other words, a dataset was created from frames of the original videos, where the object
changed its position over time. All these videos have a declared quality of 352x288 and a specified
frame rate. The videos were up to 6 minutes long, with an average length of 4 minutes. The newly
formed dataset was subsequently divided into training, validation, and testing sets to ensure robust
model development. The training set comprised 70 % of the data, providing ample examples for
learning. The validation set, at 15 %, was used to fine-tune hyperparameters and prevent
overfitting. Finally, the testing set also made up 15 % of the data, reserved for unbiased final
evaluation. This approach ensured the hybrid neo-fuzzy system's effectiveness and reliability in
video classification.

In the process of the proposed system development, the hyperparameter o of the training
method that was described in the Section 5, was manually chosen with the discrete value of a=0.5.
This value represents a balanced approach, allowing the system to maintain a balance between
rapid adaptation to new data and stable convergence. This intermediate value ensures that the
system can dynamically adjust and perform well in the complex and variable conditions typical
of real-time video classification tasks. Also, it is important to mention that by taking different
values of the a system showed worse performance therefore the initial value 0.5 maintained.

To evaluate the proposed system, it was compared with several baseline systems:

— Frame-Based CNN that treat video frames independently and combine features using
temporal modeling. Simple but struggle with long-term dependencies and computational expense;

— 3D Convolutional Neural Networks (3D CNNs), that extend 2D CNNs by adding a
temporal dimension to learn spatiotemporal features. Effective for action recognition but require
large datasets and high computational power;

— Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) Units;

— Two-Stream Convolutional Neural Network.

The results of the computational modelling are represented in the Table 1. For the
performance evaluation the accuracy, precision, recall, time consumption, and computational
efficiency metrics were chosen. The last one is measured by analysing the resource usage,
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including CPU and GPU requirements, to determine the system’s efficiency in handling video
data without excessive computational overhead.

Table 1
Results of the computational experiment
Computational Scalabilit
Method Accuracy (%) | Precision (%) | Recall (%) Efficiency Y
(Dataset Size)
(ms/frame)
EMNECS 92.5 93 92 10 High (10K+ video
frames)
Frame-Based Medium (5K
CNN 85.0 84 85 20 video frames)
Two-Stream High (8K video
CNN 88.5 89 88 25 frames)
3D CNNs 90.0 91 90 30 Medium (7K
video frames)
RNNs with Medium (6K
LSTM 87.0 86 87 33 video frames)

The EMNFCS demonstrates superior accuracy at 92.5 %, with high precision (93 %) and
recall (92 %). This indicates its robustness in correctly identifying and categorizing video content,
outperforming traditional methods such as Frame-Based CNN (85.0 %) and Two-Stream
Approaches (88.5 %).

The EMNFCS excels in computational efficiency, processing video frames at an average of
10 ms per frame. This is significantly faster than the traditional methods, with Frame-Based CNN
at 20 ms/frame and 3D CNNs at 30 ms/frame. The reduced processing time highlights the
EMNFCS's capability to handle real-time video classification tasks efficiently.

The scalability of the EMNFCS is another notable advantage. It can effectively manage large
datasets with over 10,000 videos, demonstrating high scalability. In contrast, traditional methods
like Frame-Based CNN and RNNs with LSTM struggle with medium-sized datasets (5K-7K
videos), showcasing the EMNFCS's ability to handle extensive video data without compromising
performance.

The adaptability of the EMNFCS in real-time performance is rated as excellent, indicating
its ability to adjust to varying conditions and data inputs dynamically. Traditional methods, while
good, do not reach the same level of adaptability. For instance, the Two-Stream Approaches and
3D CNNs are rated as good, while Frame-Based CNN and RNNs with LSTM are only moderate.

The EMNFCS outperforms traditional video classification methods across several key
metrics. Its high accuracy, superior computational efficiency, excellent scalability, and
outstanding adaptability make it a robust and effective solution for complex video classification
tasks. The EMNFCS sets a new standard in video classification, showcasing its ability to handle
large-scale, high-variability video data with exceptional performance and efficiency.

In conclusion, the proposed system performs very well with low-quality videos, which is a
big advantage for recognizing footage from CCTV cameras. As mentioned earlier, CCTV
cameras often produce low-quality video, making this system particularly useful for such
applications. Being able to accurately process and analyze low-resolution footage ensures that
important details are not missed, which is essential for effective surveillance and security
operations.

Additionally, the system's ability to handle different lighting conditions and motion artifacts
makes it even more suitable for real-world use. This adaptability is crucial because CCTV
cameras are used in various environments, from dimly lit indoor spaces to outdoor areas with
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changing light levels.

The hybrid neo-fuzzy approach that this system uses not only improves classification
accuracy but also provides a scalable solution that can be easily integrated into existing
surveillance systems. This potential for easy integration, along with the system's proven
effectiveness, makes it a valuable tool for improving security and monitoring in different settings.

Overall, the proposed system offers a strong solution to the challenges of low-quality video
footage, highlighting its importance and usefulness in modern surveillance practices.

8. Conclusion

In the course of the research, it was successfully developed a novel hybrid neo-fuzzy system
for video classification, incorporating multidimensional neo-fuzzy components with adjustable
synaptic weights and Gaussian membership function. By combining extended neo-fuzzy neurons
(ENFN), neo-fuzzy units (NFU), and extended nonlinear synapses (ENS) with the neuro-fuzzy
Takagi-Sugeno-Kang inference system, the proposed architecture significantly enhances the
approximating capabilities of traditional models. This enables the system to effectively address
image recognition tasks, including real-time video stream classification, while maintaining high
accuracy.

Additionally, the introduction of a new optimization method, utilizing the cross-entropy
learning criterion with one-hot encoding and the §-rule for synaptic weight adjustment, further
boosts the system's performance. The incorporation of adaptive learning rates and a forgetting
factor allows dynamic parameter adjustment, ensuring both robustness and efficiency. This dual
capability markedly improves the learning speed and accuracy in complex video classification
tasks, as demonstrated by the computational experiments.
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1.A. MAJIBKOBA, B.C. MAKE€HKO

METO/J ABTOMATH30BAHOI NHOoBYJA0BHN BA3HN 3HAHb
TH®OPMAIIMHOI CACTEMM ITPOLIECHOTI'O YIIPABJIIHHSA

3aInporoHOBaHO METOJ[ aBTOMATH30BaHOI IOOYIOBU Ta IIOIIOBHEHH: 0a3u 3HaHb CUCTEMHU
HPOLECHOro yrpasiiHHs. {11 BIOCKOHAJICHHS] METOly BUKOPHCTaHO MO (DIKOBaHI PeIUKATHI
Mozem. Moaudikamiro NPeAUKATHMX MOICICH 3MIMCHEHO 33 PaxXyHOK BHKOPUCTAHHS
TPaJMI[IHOTO TOBHOTO IMKIY PO3POOKHM MOJENi THYYKOTO 0araToBapiaHTHOTO TIPOIIECy.
HagezieHo omuc 0cOOMMBOCTEH CHCTEMH aBTOMaTH30BaHOT MOOYIOBY 0a3d 3HaHb NPU BUPIIICHHI
3a/a4d pUHHATTS pimeHs Ha [T-mianpuemctsi. [IpoBeneHo ampobariro 3apOIOHOBaHUX PIlICH
y X0Zi aBTOMaTH30BaHO1 MoOynoBy 6a3u 3HaHb y [T-mpoexTi.

1. Beryn

VY cyuyacHOMy CBITI OyAb-5IKi 3HAHHS € CTPATEriYHUM PECYpPCOM, TOMY PO3pOOKa METOJIB i
TEXHOJIOT1H yIpaBIiHHA 3HAHHAMH, 30KpeMa, 6a3amu 3HaHb (b3), 3anuiaeTbes akTyaabHOO.

3a3Buyai i yIpaBIiHHAM 3HAHHSIMH, y TIEPIITY Yepry, PO3YMIIOTh CUCTEMAaTHIHUN 30ip Ta
BUKOPHUCTAHHS KOPITOPATHBHUX 3HAHB 3 METOI0 MAaKCHMAITbHOI €()EKTHBHOCTI 1X 3aCTOCYBaHHI.

HaiiBaxxnuBimmmu poOoTaMu, sSKi BHUKOHYIOTH Yy TpOIeCi YNpaBIiHHS 3HaHHAMH, € iX
BHJO0YTOK, CTPYKTYpYBaHHSI Ta opMaizaiis.

CxitagHicTh 1 TPYJOMICTKICTh BHKOHAHHS IHX POOIT 00yMOBIIEHA CKJIAIHICTIO TPOIECY
CTBOPEHHS CUCTEM, 3aCHOBaHMUX Ha 3HaHHsX [1]-[3].
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